Stochastic replica voting machine prediction of stable cubic and double perovskite materials and binary alloys

A machine learning approach that we term the `Stochastic Replica Voting Machine' (SRVM) algorithm is presented and applied to a binary and a 3-class classification problems in materials science. Here, we employ SRVM to predict candidate compounds capable of forming stable perovskites and double perovskites and further classify binary ($AB$) solids. The results of our binary and ternary classifications compared well to those obtained by SVM and neural network algorithms.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  John C. Slater,et al.  Atomic Radii in Crystals , 1964 .

[3]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[4]  B. Jerslev Effective Ionic Radii in Oxides and Fluorides* , 1969 .

[5]  R. Roy,et al.  The major ternary structural families , 1974 .

[6]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[7]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[8]  James R. Chelikowsky,et al.  Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds , 1978 .

[9]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[11]  Francis S. Galasso,et al.  Perovskites and High Tc Superconductors , 1990 .

[12]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[13]  Martin A. Riedmiller,et al.  Rprop - Description and Implementation Details , 1994 .

[14]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[15]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[18]  Blatt,et al.  Superparamagnetic clustering of data. , 1998, Physical review letters.

[19]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[20]  Kenji Uchino,et al.  Functional and Smart Materials: Structural Evolution and Structure Analysis, by Zhong Lin Wang and Zhen Chuan Kang , 1998 .

[21]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[22]  Zhong Lin Wang Functional and Smart Materials , 2020 .

[23]  Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures , 1998 .

[24]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[25]  P. Woodward,et al.  Ordered double perovskites -- a group-theoretical analysis. , 2003, Acta crystallographica. Section B, Structural science.

[26]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[27]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[28]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[29]  George D. Magoulas,et al.  New globally convergent training scheme based on the resilient propagation algorithm , 2005, Neurocomputing.

[30]  C. Howard Structures and phase transitions in perovskites--a group-theoretical approach. , 2005, Acta Crystallographica Section A Foundations of Crystallography.

[31]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[32]  P. Woodward,et al.  A-site cation ordering in AA′BB′O6 perovskites , 2006 .

[33]  Abdul Majid,et al.  Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines , 2007 .

[34]  M. Zhu,et al.  Formability of ABO3 cubic perovskites , 2008 .

[35]  Zohar Nussinov,et al.  An Improved Potts Model Applied to Community Detection , 2008 .

[36]  V. Viallet,et al.  Structural, magnetic and electrical properties of a perovskite containing divalent europium EuZrO3 , 2008 .

[37]  Syed Gibran Javed,et al.  Predicting regularities in lattice constants of GdFeO3-type perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[38]  P. Ronhovde,et al.  Multiresolution community detection for megascale networks by information-based replica correlations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Z. Nussinov,et al.  Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses , 2010, 1101.0008.

[40]  P. Ronhovde,et al.  Local resolution-limit-free Potts model for community detection. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[42]  P Ronhovde,et al.  Detecting hidden spatial and spatio-temporal structures in glasses and complex physical systems by multiresolution network clustering , 2011, The European physical journal. E, Soft matter.

[43]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[44]  Zohar Nussinov,et al.  A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Z. Nussinov,et al.  Detection of hidden structures for arbitrary scales in complex physical systems , 2012, Scientific Reports.

[46]  Yousef Saad,et al.  Data mining for materials: Computational experiments with AB compounds , 2012 .

[47]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[48]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[49]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[50]  T Lookman,et al.  Classification of ABO3 perovskite solids: a machine learning study. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[51]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[52]  James Theiler,et al.  Materials Prediction via Classification Learning , 2015, Scientific Reports.

[53]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[54]  M. Kanatzidis,et al.  Halide Perovskites: Poor Man's High‐Performance Semiconductors , 2016, Advanced materials.

[55]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[56]  G. Pilania,et al.  Machine learning bandgaps of double perovskites , 2016, Scientific Reports.

[57]  Arun Mannodi-Kanakkithodi,et al.  Machine Learning Strategy for Accelerated Design of Polymer Dielectrics , 2016, Scientific Reports.

[58]  Tim Mueller,et al.  Machine Learning in Materials Science , 2016 .

[59]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[60]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[61]  A. Thind,et al.  First-Principles Prediction of a Stable Hexagonal Phase of CH3NH3PbI3 , 2017 .

[62]  Zohar Ringel,et al.  Mutual information, neural networks and the renormalization group , 2017, ArXiv.

[63]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[64]  Christopher M Wolverton,et al.  Predictions of new AB O 3 perovskite compounds by combining machine learning and density functional theory , 2018 .

[65]  Yanfa Yan,et al.  Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics , 2019, Energy & Environmental Science.

[66]  Raghvendra Mall,et al.  Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning. , 2019, Physical chemistry chemical physics : PCCP.

[67]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.