An Upper Bound for the Extended Kloosterman Sums over Galois Rings
暂无分享,去创建一个
Tor Helleseth | A. G. Shanbhag | P. Vijay Kumar | P. V. Kumar | T. Helleseth | A. Shanbhag | P. V. Kumar
[1] P. Vijay Kumar,et al. 4-phase Sequences with Near-optimum Correlation Properties , 1992, IEEE Trans. Inf. Theory.
[2] Laurence B. Milstein,et al. Spread-Spectrum Communications , 1983 .
[3] P Shankar. On BCH codes over arbitrary integer rings , 1979 .
[4] Priti Shankar. On BCH codes over arbitrary integer tings (Corresp.) , 1979, IEEE Trans. Inf. Theory.
[5] M.B. Pursley,et al. Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.
[6] Patrick Solé,et al. A quaternary cyclic code, and a family of quadriphase sequences with low correlation properties , 1989, Coding Theory and Applications.
[7] B. R. McDonald. Finite Rings With Identity , 1974 .
[8] N. Jacobson. Lectures In Abstract Algebra , 1951 .
[9] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[10] A. Robert Calderbank,et al. An upper bound for Weft exponential sums over Galois tings and applications , 1994, IEEE Trans. Inf. Theory.
[11] Tor Helleseth,et al. Improved binary codes and sequence families from Z4-linear codes , 1996, IEEE Trans. Inf. Theory.
[12] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[13] Robert A. Liebler,et al. Certain distance-regular digraphs and related rings of characteristic 4 , 1988, J. Comb. Theory, Ser. A.