Generation of large coherent states by bang–bang control of a trapped-ion oscillator

Fast control of quantum systems is essential to make use of quantum properties before they degrade by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems towards the boundary between quantum and classical physics. ‘Bang–bang' control attains the ultimate speed limit by making large changes to control fields much faster than the system can respond, but is often challenging to implement experimentally. Here we demonstrate bang–bang control of a trapped-ion oscillator using nanosecond switching of the trapping potentials. We perform controlled displacements with which we realize coherent states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for trapped-ion quantum information processing.

[1]  W. Case,et al.  Wigner functions and Weyl transforms for pedestrians , 2008 .

[2]  W. Hensinger,et al.  On the application of radio frequency voltages to ion traps via helical resonators , 2011, 1106.5013.

[3]  R. Blümel,et al.  Fractional frequency collective parametric resonances of an ion cloud in a Paul trap , 1998 .

[4]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[5]  Paulo E. M. F. Mendonca,et al.  Alternative fidelity measure between quantum states , 2008, 0806.1150.

[6]  J. Ekin,et al.  Experimental techniques for low-temperature measurements , 2006 .

[7]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[8]  P. Schindler,et al.  Polarization of electric field noise near metallic surfaces , 2015, 1505.01237.

[9]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[10]  J. Miranda,et al.  Biot-Savart-like law in electrostatics , 2000, physics/0011015.

[11]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[12]  Andrew M. Steane,et al.  Electrode configurations for fast separation of trapped ions , 2004, Quantum Inf. Comput..

[13]  Giovanna Morigi,et al.  Laser Cooling of Trapped Ions , 2003 .

[14]  S. Filipp,et al.  Manipulating Rydberg atoms close to surfaces at cryogenic temperatures , 2014, 1402.7217.

[15]  John R. Wolberg,et al.  Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments , 2005 .

[16]  M. Garcia-Gracia,et al.  Error propagation for the transformation of time domain into frequency domain , 1997 .

[17]  J. P. Home,et al.  Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.

[18]  John C. Slater,et al.  Interaction of Waves in Crystals , 1958 .

[19]  V. Negnevitsky,et al.  Spin–motion entanglement and state diagnosis with squeezed oscillator wavepackets , 2014, Nature.

[20]  C. Dzsinich Teil 2: , 1998, Gefässchirurgie.

[21]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[22]  C. Pai,et al.  In-Vacuum Electronics for Microfabricated Ion Traps , 2014 .

[23]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[24]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[25]  W. Alt,et al.  Microwave control of atomic motional states in a spin-dependent optical lattice , 2013, 1302.6208.

[26]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[27]  F. Schmidt-Kaler,et al.  Controlling the transport of an ion: classical and quantum mechanical solutions , 2013, 1312.4156.

[28]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[29]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[30]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[31]  J. Britton,et al.  Microfabricated Chip Traps for Ions , 2008, 0812.3907.

[32]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[33]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[34]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[35]  W. W. Macalpine,et al.  Coaxial Resonators with Helical Inner Conductor , 1959, Proceedings of the IRE.

[36]  M. B. Plenio,et al.  Manipulating the quantum information of the radial modes of trapped ions: linear phononics, entanglement generation, quantum state transmission and non-locality tests , 2008, 0809.4287.

[37]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[38]  C. Monroe,et al.  Ultrafast spin-motion entanglement and interferometry with a single atom. , 2012, Physical review letters.

[39]  Michael Niedermayr,et al.  Cryogenic surface ion trap based on intrinsic silicon , 2014 .

[40]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[41]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[42]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[43]  A. Roth Vacuum sealing techniques , 1966 .

[44]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[45]  N. Simon,et al.  Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review , 1994 .

[46]  F. Leupold,et al.  Quantum control of the motional states of trapped ions through fast switching of trapping potentials , 2012, 1208.3986.

[47]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[48]  Jan F. Schmidt,et al.  Single-component reflecting objective for low-temperature spectroscopy in the entire visible region , 2007 .

[49]  Jr-Shin Li,et al.  Optimal trajectories for efficient atomic transport without final excitation , 2011 .

[50]  R. Ozeri,et al.  Nonlinear single-spin spectrum analyzer. , 2013, Physical review letters.

[51]  E. Schrödinger,et al.  ARE THERE QUANTUM JUMPS? , 1952, The British Journal for the Philosophy of Science.

[52]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[53]  J. P. Home,et al.  Quantum harmonic oscillator state synthesis by reservoir engineering , 2014, Science.

[54]  J. Stacey Stabilization and control in a linear ion trap , 2003 .

[55]  E. Knill,et al.  Transport quantum logic gates for trapped ions , 2007, 0707.3646.

[56]  Wineland,et al.  Observation of quantum jumps in a single atom. , 1986, Physical review letters.

[57]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[58]  F. Schmidt-Kaler,et al.  Optimization of segmented linear Paul traps and transport of stored particles , 2006, quant-ph/0607217.

[59]  F. Rohde Remote ion traps for quantum networking: two-photon interference and correlations , 2009 .

[60]  Blatt,et al.  Laser cooling of trapped three-level ions: Designing two-level systems for sideband cooling. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[61]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[62]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[63]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[64]  P. Taborek,et al.  A low drift high resolution cryogenic null ellipsometer , 2004 .

[65]  Rene Andrae,et al.  Error estimation in astronomy: A guide , 2010, 1009.2755.

[66]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[67]  R. Schmied Electrostatics of gapped and finite surface electrodes , 2009, 0910.4517.

[68]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[69]  Rajeev J Ram,et al.  Ion traps fabricated in a CMOS foundry , 2014, 1406.3643.

[70]  I. A. Artioukov,et al.  Schwarzschild objective for soft x-rays , 2000 .

[71]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[72]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[73]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[74]  W. Bakr Towards a cryogenic planar ion trap for Sr-88 , 2006 .

[75]  H. J. Kimble,et al.  Quantum state transfer between motion and light , 1999 .

[76]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[77]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[78]  Haas,et al.  Thousandfold improvement in the measured antiproton mass. , 1990, Physical review letters.

[79]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[80]  D Leibfried,et al.  Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. , 2000, Physical review letters.

[81]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[82]  G. Werth,et al.  Subharmonic excitation of the eigenmodes of charged particles in a Penning trap , 2004 .

[83]  D. James,et al.  Decoherence and dephasing errors caused by the dc Stark effect in rapid ion transport , 2011, 1103.5065.

[84]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[85]  S. Fujiyoshi,et al.  Single-component reflecting objective for low-temperature imaging and spectroscopy of single nano objects , 2011 .

[86]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[87]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[88]  A. Wunsche Displaced Fock states and their connection to quasiprobabilities , 1991 .

[89]  D. Vitali,et al.  Heating and decoherence suppression using decoupling techniques , 2001, quant-ph/0108007.

[90]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[91]  David Kielpinski,et al.  Entanglement and decoherence in a trapped-ion quantum register , 2001 .

[92]  F. Casas,et al.  A pedagogical approach to the Magnus expansion , 2010 .

[93]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[94]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[95]  Horngren Datar Rajan,et al.  3RD EDITION , 2008 .

[96]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[97]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[98]  M. Suzuki,et al.  Improved Trotter-like formula , 1993 .

[99]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[100]  M. Hennrich,et al.  Bandwidth-tunable single-photon source in an ion-trap quantum network. , 2009, Physical review letters.

[101]  Curtis Volin,et al.  In-vacuum active electronics for microfabricated ion traps. , 2014, The Review of scientific instruments.

[102]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[103]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[104]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[105]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[106]  C. cohen-tannoudji,et al.  Coherent population trapping and Fano profiles , 1992 .

[107]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[108]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[109]  D. Leibfried,et al.  Quantum simulation of the hexagonal Kitaev model with trapped ions , 2011, 1107.0181.

[110]  K. Blaum,et al.  Experimental g factor of hydrogenlike silicon-28 , 2012 .

[111]  Alessio Serafini,et al.  Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials , 2009, Quantum Inf. Process..

[112]  L. Elton Atomic Physics , 1966, Nature.

[113]  Dietrich Leibfried,et al.  Optimal surface-electrode trap lattices for quantum simulation with trapped ions. , 2009, Physical review letters.

[114]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[115]  Anna Keselman,et al.  Single-ion quantum lock-in amplifier , 2011, Nature.

[116]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[117]  Satoru Fujiyoshi,et al.  Single-component reflecting objective for ultraviolet imaging and spectroscopy at cryogenic temperature , 2009 .

[118]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .

[119]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[120]  S. Stenholm The semiclassical theory of laser cooling , 1986 .

[121]  V. Buzek,et al.  Cold trapped ions as quantum information processors , 2001, quant-ph/0112041.

[122]  C. Day,et al.  Basics and applications of cryopumps , 2007 .

[123]  Chr. Bartholomae a. Teil 1 , 1961 .

[124]  J. Alonso CMOS fabrication for scalable trapped-ion quantum information processing , 2015 .

[125]  S. A. Lyon,et al.  Bang–bang control of fullerene qubits using ultrafast phase gates , 2006, quant-ph/0601008.

[126]  Isaac L. Chuang,et al.  Transparent ion trap with integrated photodetector , 2012, 1212.1443.

[127]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[128]  D Schuster,et al.  Cryogenic ion trapping systems with surface-electrode traps. , 2008, The Review of scientific instruments.

[129]  M Lucamarini,et al.  Experimental inhibition of decoherence on flying qubits via "bang-bang" control. , 2009, Physical review letters.

[130]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[131]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[132]  A Reusable, Low-profile, Cryogenic Wire Seal. , 2010, Cryogenics.

[133]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[134]  John G. Hartnett,et al.  A vibration free cryostat using pulse tube cryocooler , 2010 .

[135]  F. Schmidt-Kaler,et al.  Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments , 2001 .

[136]  J. P. Home,et al.  Memory coherence of a sympathetically cooled trapped-ion qubit , 2008, 0810.1036.

[137]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[138]  J. Alonso,et al.  Optimal electrode geometries for 2-dimensional ion arrays with bi-layer ion traps , 2014, 1406.4727.

[139]  D. Muijs,et al.  4th Edition , 2006 .

[140]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[141]  C. Langer,et al.  High Fidelity Quantum Information Processing with Trapped Ions , 2006 .

[142]  C. C. Lim Indium seals for low‐temperature and moderate‐pressure applications , 1986 .

[143]  S. Urabe,et al.  Micromotion compensation in a surface electrode trap by parametric excitation of trapped ions , 2012 .

[144]  S. Urabe,et al.  Detection of parametric resonance of trapped ions for micromotion compensation , 2011 .