Transport in Superconcentrated LiPF6 and LiBF4/Propylene Carbonate Electrolytes

Superconcentrated electrolytes for lithium-ion batteries have shown promise in circumventing certain limitations of conventional carbonate electrolytes at lower concentrations while introducing new challenges such as decreased conductivity. We use molecular dynamics simulations with diffusion and residence time analyses to elucidate the main modes of transport of LiPF6 and LiBF4 in propylene carbonate at concentrations ranging from 1 to 3 M. Notably, we find that the Li+ mode of diffusion with respect to its surrounding propylene carbonate solvation shell is a mix of vehicular and structural diffusion at all studied concentrations, exhibiting a small increase toward structural diffusion in the superconcentrated regimes. Furthermore, and important for future strategies toward improved conductivity, we find that the Li+ ions associated with PF6– anions move in an increasingly vehicular manner as the salt concentration is increased, while the Li+ ions associated with BF4– anions move in an increasingly struc...

[1]  M. Olvera de la Cruz,et al.  Control of Ionic Mobility via Charge Size Asymmetry in Random Ionomers. , 2019, Nano letters.

[2]  Brandon M. Wood,et al.  Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries , 2019, ACS central science.

[3]  Yuki Yamada,et al.  Advances and issues in developing salt-concentrated battery electrolytes , 2019, Nature Energy.

[4]  D. Bedrov,et al.  How efficient is Li+ ion transport in solvate ionic liquids under anion-blocking conditions in a battery? , 2018, Physical chemistry chemical physics : PCCP.

[5]  Colin M. Burke,et al.  Polarizable Molecular Dynamics and Experiments of 1,2-Dimethoxyethane Electrolytes with Lithium and Sodium Salts: Structure and Transport Properties. , 2018, The journal of physical chemistry. B.

[6]  J. Jang,et al.  Ionic Conduction and Solution Structure in LiPF6 and LiBF4 Propylene Carbonate Electrolytes , 2018, The Journal of Physical Chemistry C.

[7]  Stefano Mossa,et al.  Solvent and Salt Effect on Lithium Ion Solvation and Contact Ion Pair Formation in Organic Carbonates: A Quantum Chemical Perspective , 2018, The Journal of Physical Chemistry C.

[8]  Mahesh Mynam,et al.  Effect of Salt Concentration on Properties of Lithium Ion Battery Electrolytes: A Molecular Dynamics Study , 2018 .

[9]  O. Acevedo,et al.  Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations. , 2017, Journal of chemical theory and computation.

[10]  M. Maroncelli,et al.  Solute Rotation in Ionic Liquids: Size, Shape, and Electrostatic Effects. , 2017, The journal of physical chemistry. B.

[11]  P. Johansson,et al.  Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries , 2017 .

[12]  Jie Xiao,et al.  Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications , 2017, Advanced science.

[13]  K. Gering Prediction of Electrolyte Conductivity: Results from a Generalized Molecular Model Based on Ion Solvation and a Chemical Physics Framework , 2017 .

[14]  Stefano Mossa,et al.  The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions. , 2016, The journal of physical chemistry letters.

[15]  M. Inaba,et al.  Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries , 2016 .

[16]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[17]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[18]  Soon-Ki Jeong,et al.  Raman Spectroscopy for Understanding of Lithium Intercalation into Graphite in Propylene Carbonated-Based Solutions , 2015 .

[19]  Brett M. Savoie,et al.  Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes , 2015, ACS central science.

[20]  Daniel M. Seo,et al.  Role of Mixed Solvation and Ion Pairing in the Solution Structure of Lithium Ion Battery Electrolytes , 2015 .

[21]  J. Dahn,et al.  The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries , 2015 .

[22]  Stefano Mossa,et al.  Li+ Solvation in Pure, Binary, and Ternary Mixtures of Organic Carbonate Electrolytes , 2014, 1411.7171.

[23]  O. Borodin,et al.  X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte. , 2014, Physical chemistry chemical physics : PCCP.

[24]  Q. Qu,et al.  A safe and superior propylene carbonate-based electrolyte with high-concentration Li salt , 2014 .

[25]  Daniel M. Seo,et al.  Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate , 2013 .

[26]  D. Beljonne,et al.  A joint theoretical/experimental study of the structure, dynamics, and Li+ transport in bis([tri]fluoro[methane]sulfonyl)imide [T]FSI-based ionic liquids. , 2013, The Journal of chemical physics.

[27]  S. Greenbaum,et al.  Understanding Li(+)-Solvent Interaction in Nonaqueous Carbonate Electrolytes with (17)O NMR. , 2013, The journal of physical chemistry letters.

[28]  任知良,et al.  Lithium-ion battery electrolyte , 2012 .

[29]  E. Maginn,et al.  A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. , 2011, The Journal of chemical physics.

[30]  S. Alavi,et al.  Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids. , 2011, Physical Chemistry, Chemical Physics - PCCP.

[31]  A. Stuchebrukhov,et al.  Accounting for electronic polarization in non-polarizable force fields. , 2011, Physical chemistry chemical physics : PCCP.

[32]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[33]  Y. Kameda,et al.  Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions , 2009 .

[34]  Y. Kameda,et al.  Solvation structure of Li+ in concentrated LiPF6-propylene carbonate solutions. , 2007, The journal of physical chemistry. B.

[35]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[36]  O. Borodin,et al.  LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[37]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[38]  M. Masia,et al.  Diffusion coefficient of ionic solvation shell molecules. , 2005, The Journal of chemical physics.

[39]  A. Pádua,et al.  Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions , 2004 .

[40]  H. Tsunekawa,et al.  Solvation and Ion Association Studies of LiBF4−Propylenecarbonate and LiBF4−Propylenecarbonate−Trimethyl Phosphate Solutions , 2003 .

[41]  G. Ranieri,et al.  Temperature dependence of lithium ion solvation in ethylene carbonate–LiClO4 solutions , 2003 .

[42]  R. Marzke,et al.  High Li + Self-Diffusivity and Transport Number in Novel Electrolyte Solutions , 2001 .

[43]  J. Barthel,et al.  FTIR Spectroscopy of Ion Solvation of LiClO4 and LiSCN in Acetonitrile, Benzonitrile, and Propylene Carbonate , 2000 .

[44]  Miho Fujita,et al.  Conductivity and Solvation of Li+ Ions of LiPF6 in Propylene Carbonate Solutions , 2000 .

[45]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[46]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[47]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[48]  M. Ue,et al.  Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent , 1995 .

[49]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[50]  J. Dahn,et al.  How to reduce the cointercalation of propylene carbonate in Li /SUB x/ ZrS/sub 2/ and other layered compounds , 1985 .

[51]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[52]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[53]  I. Rubinstein,et al.  Confirmation of the hopping mechanism of the conductivity of bromide ions in solutions containing bromine , 1980 .

[54]  M. Inaba,et al.  Dilution of Highly Concentrated LiBF4/Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi0.5Mn1.5O4 Positive Electrodes , 2017 .

[55]  Yuki Yamada,et al.  Review—Superconcentrated Electrolytes for Lithium Batteries , 2015 .

[56]  Robert S. Anderssen,et al.  Sums of Exponentials Approximations for the Kohlrausch Function , 2011 .

[57]  Y. Marcus,et al.  Ion pairing. , 2006, Chemical reviews.

[58]  Friedrich Kremer,et al.  Broadband dielectric spectroscopy , 2003 .

[59]  M. Ishikawa,et al.  A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts , 1998 .