A model for flagellar motility.

Experimental investigation has provided a wealth of structural, biochemical, and physiological information regarding the motile mechanism of eukaryotic flagella/cilia. This chapter surveys the available literature, selectively focusing on three major objectives. First, it attempts to identify those conserved structural components essential to providing motile function in eukaryotic axonemes. Second, it examines the relationship between these structural elements to determine the interactions that are vital to the mechanism of flagellar/ciliary beating. Third, the vital principles of these interactions are incorporated into a tractable theoretical model, referred to as the Geometric Clutch, and this hypothetical scheme is examined to assess its compatibility with experimental observations.

[1]  C. Omoto Mechanochemical coupling in eukaryotic flagella. , 1989, Journal of theoretical biology.

[2]  Keiichi Takahashi,et al.  Direct measurement of the force of microtubule sliding in flagella , 1981, Nature.

[3]  F. R. Lillie Studies of fertilization. V. The behavior of the spermatozoa of Nereis and Arbacia with special reference to egg‐extractives , 1913 .

[4]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. , 1992, Science.

[5]  U. Goodenough,et al.  Substructure of the outer dynein arm , 1982, The Journal of cell biology.

[6]  J. Demaille,et al.  Immunocytochemical and biochemical evidence for the presence of calmodulin in bull sperm flagellum. Isolation and characterization of sperm calmodulin. , 1981, Biochimica et biophysica acta.

[7]  T. Miki-Noumura,et al.  ATP-induced sliding of microtubules on tracks of 22S dynein molecules aligned with the same polarity. , 1994, Cell motility and the cytoskeleton.

[8]  A. Flagell M O V E M E N T OF SEA URCHIN SPERM , 2003 .

[9]  Y. Watanabe,et al.  Studies on calmodulin isolated from Tetrahymena cilia and its localization within the cilium. , 1982, Experimental cell research.

[10]  J. Tash Protein phosphorylation: the second messenger signal transducer of flagellar motility. , 1989, Cell motility and the cytoskeleton.

[11]  R. Kamiya,et al.  High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes , 1989, Nature.

[12]  B. Morton,et al.  Reactivation of progressive motility in hamster sperm modified by Triton X-100. , 1973, Experimental eye research.

[13]  P. Satir,et al.  Ca2+-dependent arrest of cilia without uncoupling epithelial cells , 1976, Nature.

[14]  S. Dutcher,et al.  Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms , 1992, The Journal of cell biology.

[15]  R. Yanagimachi,et al.  The viability of hamster spermatozoa stored in the isthmus of the oviduct: the importance of sperm-epithelium contact for sperm survival. , 1990, Biology of reproduction.

[16]  J. Gray,et al.  The Movement of Sea-Urchin Spermatozoa , 1955 .

[17]  R. Rikmenspoel Elastic properties of the sea urchin sperm flagellum. , 1966, Biophysical journal.

[18]  P. Satir,et al.  THE STRUCTURAL BASIS OF CILIARY BEND FORMATION , 1974, The Journal of cell biology.

[19]  M. Chulavatnatol Motility initiation of quiescent spermatozoa from rat caudal epididymis: effects of pH, viscosity, osmolality and inhibitors. , 1982, International journal of andrology.

[20]  C. Omoto,et al.  ATP analogs substituted on the 2-position as substrates for dynein ATPase activity. , 1989, Biochimica et biophysica acta.

[21]  S. Suarez,et al.  Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. , 1987, Biology of reproduction.

[22]  G. Piperno,et al.  ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms. , 1995, Molecular biology of the cell.

[23]  J. André The Sperm Cell , 1982, Springer Netherlands.

[24]  R. Yanagimachi,et al.  Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. , 1974, Experimental cell research.

[25]  K. Gull,et al.  Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of Trypanosoma brucei , 1995, Parasitology.

[26]  C. Wilkerson,et al.  The Mr 78,000 intermediate chain of Chlamydomonas outer arm dynein interacts with alpha-tubulin in situ. , 1991, The Journal of biological chemistry.

[27]  P. Satir,et al.  Analysis of Ni(2+)-induced arrest of Paramecium axonemes. , 1991, Journal of cell science.

[28]  K. Oiwa,et al.  The force-velocity relationship for microtubule sliding in demembranated sperm flagella of the sea urchin. , 1988, Cell structure and function.

[29]  C. Brokaw Non-sinusoidal bending waves of sperm flagella. , 1965, The Journal of experimental biology.

[30]  W. Sale,et al.  Direction of active sliding of microtubules in Tetrahymena cilia. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Tamm Ciliary reversal without rotation of axonemal structures in ctenophore comb plates , 1981, The Journal of cell biology.

[32]  D. Luck,et al.  Suppressor mutations in chlamydomonas reveal a regulatory mechanism for flagellar function , 1982, Cell.

[33]  K.,et al.  Subfractionation of Chlamydomonas 18 S dynein into two unique subunits containing ATPase activity. , 1984, The Journal of biological chemistry.

[34]  G. Olson,et al.  Observations of the structural components of flagellar axonemes and central pair microtubules from rat sperm. , 1977, Journal of ultrastructure research.

[35]  S. Tamm Iontophoretic localization of Ca-sensitive sites controlling activation of ciliary beating in macrocilia of Beroë: the ciliary rete. , 1988, Cell motility and the cytoskeleton.

[36]  G. Piperno,et al.  Mutations in the "dynein regulatory complex" alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes , 1994, The Journal of cell biology.

[37]  W. Sale,et al.  Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro , 1988, The Journal of cell biology.

[38]  J. Rosenbaum,et al.  A motile Chlamydomonas flagellar mutant that lacks outer dynein arms , 1985, The Journal of cell biology.

[39]  G. Piperno,et al.  The inner dynein arms I2 interact with a "dynein regulatory complex" in Chlamydomonas flagella , 1992, The Journal of cell biology.

[40]  C Thibault,et al.  Sperm transport and storage in vertebrates. , 1973, Journal of reproduction and fertility. Supplement.

[41]  P. Satir,et al.  Dynein arm substructure and the orientation of arm-microtubule attachments. , 1984, Journal of molecular biology.

[42]  C. Brokaw Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella , 1979, The Journal of cell biology.

[43]  W. Sale,et al.  Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase , 1994, The Journal of cell biology.

[44]  D. Phillips,et al.  MAMMALIAN SPERM MOTILITY— STRUCTURE IN RELATION TO FUNCTION , 1975 .

[45]  C. Omoto Mechanochemical coupling in cilia. , 1991, International review of cytology.

[46]  C. Brokaw,et al.  Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin , 1985, The Journal of cell biology.

[47]  R. Rikmenspoel,et al.  Sperm flagellar motion maintained by ADP. , 1972, Experimental cell research.

[48]  T. Lincoln,et al.  Dynamics of Fluids and Plasmas , 1966 .

[49]  T. Shimizu The substrate specificity of dynein from Tetrahymena cilia. , 1987, Journal of biochemistry.

[50]  M. J. Cormier,et al.  Calmodulin localization in mammalian spermatozoa. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Jefrey L. Salisbury CENTRIN AND THE ALGAL FLAGELLAR APPARATUS , 1989 .

[52]  G. Witman,et al.  Multiple sites of phosphorylation within the alpha heavy chain of Chlamydomonas outer arm dynein. , 1994, The Journal of biological chemistry.

[53]  P. Satir,et al.  The dynein ATPases , 1989 .

[54]  B. Lieberman,et al.  Quality control in an in-vitro fertilization laboratory: use of human sperm survival studies. , 1989, Human reproduction.

[55]  K. Johnson,et al.  Activation of the dynein adenosinetriphosphatase by cross-linking to microtubules. , 1989, Biochemistry.

[56]  R. Cone,et al.  Dense fibers protect mammalian sperm against damage. , 1990, Biology of reproduction.

[57]  N. Cross,et al.  THE ROLE OF EXTERNAL SODIUM IN SEA URCHIN FERTILIZATION , 1978 .

[58]  K. Johnson Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. , 1985, Annual Review of Biophysics and Biophysical Chemistry.

[59]  J J Blum,et al.  Three-dimensional mechanics of eukaryotic flagella. , 1983, Biophysical journal.

[60]  D. Pennock,et al.  Biochemical Analysis of a Mutant Tetrahymena Lacking Outer Dynein Arms , 1993, The Journal of eukaryotic microbiology.

[61]  P. Jouannet,et al.  Influence of Flagellar Wave Development on Human Sperm Movement in Seminal Plasma , 1983 .

[62]  H. Sugi,et al.  The mode of ATP-dependent microtubule-kinesin sliding in the auxotonic condition. , 1995, The Journal of experimental biology.

[63]  R. Allen A REINVESTIGATION OF CROSS-SECTIONS OF CILIA , 1968, The Journal of cell biology.

[64]  M. Kondo,et al.  Effect of cAMP on ciliary function in rabbit tracheal epithelial cells. , 1989, Journal of applied physiology.

[65]  S. Hisanaga,et al.  Activation of ATPase activity of 14S dynein from Tetrahymena cilia by microtubules. , 1992, European journal of biochemistry.

[66]  C. Kung,et al.  Rotation and twist of the central-pair microtubules in the cilia of Paramecium , 1980, The Journal of cell biology.

[67]  B. Afzelius Electron Microscopy of the Sperm Tail Results Obtained with a New Fixative , 1959, The Journal of biophysical and biochemical cytology.

[68]  C. Brokaw,et al.  Calcium‐induced change in form of demembranated sea urchin sperm flagella immobilized by vanadate , 1981 .

[69]  G. Kreimer,et al.  Novel touch-induced, Ca(2+)-dependent phobic response in a flagellate green alga. , 1994, Cell motility and the cytoskeleton.

[70]  D F Katz,et al.  Movement characteristics and acrosomal status of rabbit spermatozoa recovered at the site and time of fertilization. , 1983, Biology of reproduction.

[71]  Y. Hiramoto,et al.  Mechanical stimulation of starfish sperm flagella. , 1976, The Journal of experimental biology.

[72]  C. Brokaw,et al.  Bend propagation by a sliding filament model for flagella. , 1971, The Journal of experimental biology.

[73]  R. E. Stephens,et al.  Dynein from serotonin-activated cilia and flagella: extraction characteristics and distinct sites for cAMP-dependent protein phosphorylation. , 1992, Journal of cell science.

[74]  C. Lindemann A cAMP-induced increase in the motility of demembranated bull sperm models , 1978, Cell.

[75]  B. Shapiro,et al.  Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. , 1982, The Journal of biological chemistry.

[76]  R. Vale Microtubule motors: many new models off the assembly line. , 1992, Trends in biochemical sciences.

[77]  Y. Nakaoka,et al.  Regulation of ciliary reversal in triton-extracted Paramecium by calcium and cyclic adenosine monophosphate. , 1985, Journal of cell science.

[78]  G. Witman,et al.  The photoaffinity probe 8-azidoadenosine 5'-triphosphate selectively labels the heavy chain of Chlamydomonas 12 S dynein. , 1984, The Journal of biological chemistry.

[79]  G. Piperno,et al.  Axonemal adenosine triphosphatases from flagella of Chlamydomonas reinhardtii. Purification of two dyneins. , 1979, The Journal of biological chemistry.

[80]  J. Goltz,et al.  Calcium regulation of flagellar curvature and swimming pattern in triton X-100--extracted rat sperm. , 1988, Cell motility and the cytoskeleton.

[81]  R. Vallee,et al.  Isolated flagellar outer arm dynein translocates brain microtubules in vitro , 1987, Nature.

[82]  R. Eckert,et al.  Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii , 1976, Nature.

[83]  K. E. Machin Wave Propagation along Flagella , 1958 .

[84]  C. Gagnon,et al.  Structure and mass analysis of 12S and 19S dynein obtained from bull sperm flagella. , 1987, Cell motility and the cytoskeleton.

[85]  T. Hamasaki,et al.  Regulation of ciliary beat frequency by a dynein light chain. , 1995, Cell motility and the cytoskeleton.

[86]  C. Brokaw Flagellar Movement: A Sliding Filament Model , 1972, Science.

[87]  I. Gibbons THE RELATIONSHIP BETWEEN THE FINE STRUCTURE AND DIRECTION OF BEAT IN GILL CILIA OF A LAMELLIBRANCH MOLLUSC , 1961, The Journal of biophysical and biochemical cytology.

[88]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[89]  R. Vallee,et al.  DYNEINS: molecular structure and cellular function. , 1994, Annual review of cell biology.

[90]  Y. Naitoh Control of the Orientation of Cilia by Adenosinetriphosphate, Calcium, and Zinc in Glycerol-Extracted Paramecium caudatum , 1969, The Journal of general physiology.

[91]  G. Witman,et al.  Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components , 1978, The Journal of cell biology.

[92]  R. Kamiya,et al.  Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms , 1986, The Journal of cell biology.

[93]  S. Takada,et al.  Three-headed outer arm dynein from Chlamydomonas that can functionally combine with outer-arm-missing axonemes. , 1992, Journal of biochemistry.

[94]  I. Gibbons,et al.  FLAGELLAR MOVEMENT AND ADENOSINE TRIPHOSPHATASE ACTIVITY IN SEA URCHIN SPERM EXTRACTED WITH TRITON X-100 , 1972, The Journal of cell biology.

[95]  D. Phillips,et al.  COMPARATIVE ANALYSIS OF MAMMALIAN SPERM MOTILITY , 1972, The Journal of cell biology.

[96]  C. Lindemann,et al.  Inhibition of microtubule sliding by Ni2+ and Cd2+: evidence for a differential response of certain microtubule pairs within the bovine sperm axoneme. , 1993, Cell motility and the cytoskeleton.

[97]  W. Sale The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails , 1986, The Journal of cell biology.

[98]  F. Warner Cation-induced attachment of ciliary dynein cross-bridges , 1978, The Journal of cell biology.

[99]  H. Mohri,et al.  Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa. A study using demembranated sperm models. , 1980, Experimental cell research.

[100]  R Kamiya,et al.  Novel mode of hyper-oscillation in the paralyzed axoneme of a Chlamydomonas mutant lacking the central-pair microtubules. , 1995, Cell motility and the cytoskeleton.

[101]  M. Sleigh The Biology of Cilia and Flagella , 1964 .

[102]  A. Weaver,et al.  Newt lung ciliated cell models: effect of MgATP on beat frequency and waveforms. , 1985, Cell motility.

[103]  R. Vale,et al.  Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia , 1988, Cell.

[104]  F. Warner,et al.  Kinetic properties of microtubule-activated 13 S and 21 S dynein ATPases. Evidence for allosteric behaviour associated with the inner row and outer row dynein arms. , 1986, Journal of cell science.

[105]  Keith Dudley Meiotic Inhibition - Molecular Control of Meiosis : Progress in Clinical and Biological Research, Vol. 267 , 1989 .

[106]  I. Gibbons,et al.  Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[107]  I. Gibbons,et al.  Live and reactivated motility in the 9+0 flagellum of Anguilla sperm. , 1985, Cell motility.

[108]  D. Mitchell,et al.  Interactions of dynein arms with b subfibers of Tetrahymena cilia: quantitation of the effects of magnesium and adenosine triphosphate , 1980, The Journal of cell biology.

[109]  Y. Hiramoto,et al.  Comparative study of the beat patterns of American and Asian horseshoe crab sperm : evidence for a role of the central pair complex in forming planar waveforms in flagella , 1988 .

[110]  G. Witman,et al.  Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. , 1990, The Journal of biological chemistry.

[111]  R. Kamiya,et al.  Strikingly low ATPase activities in flagellar axonemes of a Chlamydomonas mutant missing outer dynein arms. , 1990, European journal of biochemistry.

[112]  J. Blum,et al.  Properties of an excitable dynein model for bend propagation in cilia and flagella. , 1989, Journal of theoretical biology.

[113]  R. Kamiya,et al.  Strikingly different propulsive forces generated by different dynein-deficient mutants in viscous media. , 1995, Cell motility and the cytoskeleton.

[114]  C. Lindemann,et al.  The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition. , 1992, Journal of cell science.

[115]  M. Morisawa,et al.  Short-term changes in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. , 1987, The Journal of experimental zoology.

[116]  R. Blandau,et al.  The duration of the fertilizing capacity of spermatozoa in the female genital tract of the rat , 1941 .

[117]  L. Fraser,et al.  Minimum and maximum extracellular Ca2+ requirements during mouse sperm capacitation and fertilization in vitro. , 1987, Journal of reproduction and fertility.

[118]  D. Woolley,et al.  The distal sperm flagellum: its potential for motility after separation from the basal structures. , 1995, The Journal of experimental biology.

[119]  R. Kamiya,et al.  Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm. , 1993, Cell structure and function.

[120]  S. Dutcher,et al.  Analysis of the movement of Chlamydomonas flagella:" the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella , 1982, The Journal of cell biology.

[121]  D. Phillips,et al.  Motility of rat spermatozoa at the site of fertilization. , 1988, Biology of reproduction.

[122]  P. Wong,et al.  The effects of extracellular sodium on acid release and motility initiation in rat caudal epididymal spermatozoa in vitro. , 1981, Experimental cell research.

[123]  H. Masure,et al.  Specific localization of scallop gill epithelial calmodulin in cilia , 1982, The Journal of cell biology.

[124]  D. Escalier,et al.  Ultrastructural morphometry of the human sperm flagellum with a stereological analysis of the lengths of the dense fibres , 1983, Biology of the cell.

[125]  C. Kung,et al.  The pair of central tubules rotates during ciliary beat in Paramecium , 1979, Nature.

[126]  M. Holwill,et al.  The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti. , 1970, The Journal of experimental biology.

[127]  D. Woolley,et al.  Three-dimensional geometry of motile hamster spermatozoa. , 1984, Journal of cell science.

[128]  P. Hegemann,et al.  Light‐induced stop response in Chlamydomonas reinhardtii: Occurrence and adaptation phenomena , 1989 .

[129]  C. Johnson,et al.  Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. , 1983, Developmental biology.

[130]  G. Olson,et al.  Structural chemistry of outer dense fibers of rat sperm. , 1980, Biology of reproduction.

[131]  D F Katz,et al.  Movement characteristics of hamster spermatozoa within the oviduct. , 1980, Biology of reproduction.

[132]  M. Sleigh Cilia and flagella , 1974 .

[133]  E. O'Toole,et al.  Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella , 1994, The Journal of cell biology.

[134]  R. Vale,et al.  Microtubule translocation properties of intact and proteolytically digested dyneins from Tetrahymena cilia , 1989, The Journal of cell biology.

[135]  M. Walter,et al.  Calcium control of ciliary arrest in mussel gill cells , 1978, The Journal of cell biology.

[136]  Y. Naitoh Ionic Control of the Reversal Response of Cilia in Paramecium caudatum , 1968, The Journal of general physiology.

[137]  M. Holwill,et al.  Micromanipulation of the flagellum of Crithidia oncopelti. I. Mechanical effects. , 1974, The Journal of experimental biology.

[138]  R. Hard,et al.  Reactivation of outer-arm-depleted lung axonemes: evidence for functional differences between inner and outer dynein arms in situ. , 1992, Cell motility and the cytoskeleton.

[139]  H. Machemer Cilia in Cell Motility: Membrane-Controlled Rotary Engines , 1990 .

[140]  I. Gibbons,et al.  Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella , 1987, Nature.

[141]  A. Wanner,et al.  Cyclic AMP-dependent phosphorylation of a 26 kD axonemal protein in ovine cilia isolated from small tissue pieces. , 1993, American journal of respiratory cell and molecular biology.

[142]  R. Kamiya,et al.  Microtubule translocation caused by three subspecies of inner‐arm dynein from Chlamydomonas flagella , 1990, FEBS letters.

[143]  P. Satir STUDIES ON CILIA : II. Examination of the Distal Region of the Ciliary Shaft and the Role of the Filaments in Motility. , 1965 .

[144]  I. Gibbons,et al.  Calcium-induced quiescence in reactivated sea urchin sperm , 1980, The Journal of cell biology.

[145]  R. Rikmenspoel Contractile mechanisms in flagella. , 1971, Biophysical journal.

[146]  P. Satir Switching mechanisms in the control of ciliary motility , 1985 .

[147]  T. Hamasaki,et al.  In vitro phosphorylation of Paramecium axonemes and permeabilized cells. , 1989, Cell motility and the cytoskeleton.

[148]  B. Morton,et al.  Initiation of hamster sperm motility from quiescence: effect of conditions upon flagellation and respiration. , 1979, Fertility and sterility.

[149]  J. Gatti,et al.  Trout sperm motility. The transient movement of trout sperm is related to changes in the concentration of ATP following the activation of the flagellar movement. , 1987, European journal of biochemistry.

[150]  B. Afzelius THE FINE STRUCTURE OF THE CILIA FROM CTENOPHORE SWIMMING-PLATES , 1961, The Journal of biophysical and biochemical cytology.

[151]  S. Penningroth,et al.  Evidence for functional differences between two flagellar dynein ATPases. , 1986, Cell motility and the cytoskeleton.

[152]  B. Shapiro,et al.  Coupled ionic and enzymatic regulation of sperm behavior. , 1985, Current topics in cellular regulation.

[153]  S. Suarez,et al.  Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[154]  R. Kamiya,et al.  A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. , 1985, Journal of cell science.

[155]  C. Brokaw,et al.  Chemotactic Turning Behaviour of Tubularia Spermatozoa , 1970 .

[156]  W. Sale,et al.  Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[157]  C. Brokaw Microtubule sliding, bend initiation, and bend propagation parameters of Ciona sperm flagella altered by viscous load. , 1996, Cell motility and the cytoskeleton.

[158]  M. Flavin,et al.  Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. , 1978, Biochemical and biophysical research communications.

[159]  C. Gagnon,et al.  A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes. , 1994, Molecular biology of the cell.

[160]  Gibbons Ir Sliding and bending in sea urchin sperm flagella. , 1982 .

[161]  I. Gibbons,et al.  Functional recombination of dynein 1 with demembranated sea urchin sperm partially extracted with KC1. , 1976, Biochemical and biophysical research communications.

[162]  M. Okuno,et al.  Initiation of Sperm Motility Induced by Cyclic AMP in Hamster and Boar , 1987 .

[163]  E. O'Toole,et al.  The bop2-1 mutation reveals radial asymmetry in the inner dynein arm region of Chlamydomonas reinhardtii , 1994, The Journal of cell biology.

[164]  J. Gray,et al.  The Propulsion of Sea-Urchin Spermatozoa , 1955 .

[165]  D. J. Asai Multi-dynein hypothesis. , 1995, Cell motility and the cytoskeleton.

[166]  C. Wilkerson,et al.  Molecular analysis of the gamma heavy chain of Chlamydomonas flagellar outer-arm dynein. , 1994, Journal of cell science.

[167]  C. Brokaw,et al.  Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified. , 1985, Biophysical journal.

[168]  H. Machemer,et al.  Axial-view recording: An approach to assess the third dimension of the ciliary cycle* , 1987 .

[169]  R. Rikmenspoel The tail movement of bull spermatozoa. Observations and model calculations. , 1965, Biophysical journal.

[170]  D. Porterfield,et al.  The effect of visible radiation on the functional life-span of mammalian and avian spermatozoa. , 1962, Experimental cell research.

[171]  W. Sale Study of the properties of MgATP2--induced stationary bends in demembranated sea urchin sperm. , 1985, Cell motility.

[172]  I. Gibbons,et al.  EFFECTS OF TRYPSIN DIGESTION ON FLAGELLAR STRUCTURES AND THEIR RELATIONSHIP TO MOTILITY , 1973, The Journal of cell biology.

[173]  C. Brokaw Regulation of sperm flagellar motility by calcium and cAMP‐dependent phosphorylation , 1987, Journal of cellular biochemistry.

[174]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[175]  G. Piperno,et al.  The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. , 1995, Molecular biology of the cell.

[176]  C. Omoto,et al.  Regulatory role of nucleotides in axonemal function. , 1995, Cell motility and the cytoskeleton.

[177]  C. Lindemann,et al.  The calcium-induced curvature reversal of rat sperm is potentiated by cAMP and inhibited by anti-calmodulin. , 1991, Cell motility and the cytoskeleton.

[178]  P. Satir,et al.  Effect of vanadate on gill cilia: switching mechanism in ciliary beat. , 1979, Journal of supramolecular structure.

[179]  C. B. Metz,et al.  Fertilization : comparative morphology, biochemistry, and immunology , 1967 .

[180]  V. Pallini,et al.  The accessory fibers of the sperm tail. High-sulfur and low-sulfur components in mammals and cephalopods. , 1976, Journal of ultrastructure research.

[181]  P. Satir Ionophore-mediated calcium entry induces mussel gill ciliary arrest , 1975, Science.

[182]  T. Turner,et al.  Cauda epididymal sperm motility: a comparison among five species. , 1985, Biology of reproduction.

[183]  J. Rosenbaum,et al.  Protein-protein interactions in the 18S ATPase of Chlamydomonas outer dynein arms. , 1986, Cell motility and the cytoskeleton.

[184]  C. Brokaw,et al.  Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. , 1972, Biophysical journal.

[185]  R. Kamiya,et al.  Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein , 1992 .

[186]  T. Shimizu Recombination of ciliary dynein of Tetrahymena with the outer fibers. , 1975, Journal of biochemistry.

[187]  C. Brokaw,et al.  Mechanochemical coupling in flagella. I. Movement-dependent dephosphorylation of ATP by glycerinated spermatozoa. , 1968, Archives of biochemistry and biophysics.

[188]  C. Brokaw,et al.  Multiple protein kinase activities required for activation of sperm flagellar motility. , 1995, Cell motility and the cytoskeleton.

[189]  B. Baccetti Comparative spermatology 20 years after , 1991 .

[190]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components , 1981, The Journal of cell biology.

[191]  R. Rikmenspoel,et al.  A selective effect of Ni2+ on wave initiation in bull sperm flagella , 1980, The Journal of cell biology.

[192]  M. Bessen,et al.  Calcium control of waveform in isolated flagellar axonemes of chlamydomonas , 1980, The Journal of cell biology.

[193]  C. Brokaw Cyclic AMP‐dependent Activation of Sea Urchin and Tunicate Sperm Motility a , 1984, Annals of the New York Academy of Sciences.

[194]  G. Witman,et al.  Dynein arm conformation and mechanochemical transduction in the eukaryotic flagellum. , 1982, Symposia of the Society for Experimental Biology.

[195]  J. Schrével,et al.  [A functional flagella with a 6 + 0 pattern] , 1975, The Journal of cell biology.

[196]  H. Machemer,et al.  Ciliary beating in three dimensions: Steps of a quantitative description , 1992, Journal of mathematical biology.

[197]  Bertram L. Smith Tactics in Reproduction. (Book Reviews: Sperm Competition and the Evolution of Animal Mating Systems) , 1984 .

[198]  S. Morisawa,et al.  Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. , 1988, The Journal of experimental biology.

[199]  G. Prensier,et al.  Motile flagellum with a "3 + 0" ultrastructure. , 1980, Science.

[200]  S. F. Goldstein Starting transients in sea urchin sperm flagella , 1979, The Journal of cell biology.

[201]  E. Holzbaur,et al.  Microtubules accelerate ADP release by dynein. , 1989, Biochemistry.

[202]  C. Brokaw,et al.  New evidence for a "biased baseline" mechanism for calcium-regulated asymmetry of flagellar bending. , 1987, Cell motility and the cytoskeleton.

[203]  R. Dallai,et al.  Development of the accessory tubules of insect sperm flagella , 1993 .

[204]  J. Blum,et al.  Model for bend propagation in flagella. , 1971, Journal of Theoretical Biology.

[205]  D. Garbers,et al.  Effects of phosphodiesterase inhibitors and cyclic nucleotides on sperm respiration and motility , 1971 .

[206]  G B Witman,et al.  The 78,000-M(r) intermediate chain of Chlamydomonas outer arm dynein is a microtubule-binding protein , 1995, The Journal of cell biology.

[207]  E. Mandelkow,et al.  Interaction between kinesin, microtubules, and microtubule-associated protein 2. , 1989, Cell motility and the cytoskeleton.

[208]  D. Katz The Evolution of Mammalian Sperm Motility in the Male and Female Reproductive Tracts , 1983 .

[209]  G. Witman,et al.  Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella , 1983, The Journal of cell biology.

[210]  J. Blum,et al.  Presence of calmodulin in Tetrahymena. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[211]  C. Brokaw Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. , 1976, Biophysical journal.

[212]  J. Goltz,et al.  Regulation of activation state and flagellar wave form in epididymal rat sperm: evidence for the involvement of both Ca2+ and cAMP. , 1987, Cell motility and the cytoskeleton.

[213]  H. Sakakibara,et al.  Functional Recombination of Outer Dynein Arms with Outer Arm-Missing Flagellar Axonemes of a Chlamydomonas Mutant , 1989 .

[214]  R. Yanagimachi Mechanisms of Fertilization in Mammals , 1981 .

[215]  C. Shingyoji,et al.  Flagellar quiescence response in sea urchin sperm induced by electric stimulation. , 1995, Cell motility and the cytoskeleton.

[216]  A calcium regenerative potential controlling ciliary reversal is propagated along the length of ctenophore comb plates. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[217]  E. Holzbaur,et al.  Dynein structure and function. , 1986, Journal of cell science. Supplement.

[218]  G. Witman,et al.  Functionally significant central-pair rotation in a primitive eukaryotic flagellum , 1981, Nature.

[219]  R Kamiya,et al.  High-frequency vibration in flagellar axonemes with amplitudes reflecting the size of tubulin , 1992, The Journal of cell biology.

[220]  C. Lindemann Functional significance of the outer dense fibers of mammalian sperm examined by computer simulations with the geometric clutch model. , 1996, Cell motility and the cytoskeleton.

[221]  R. Young,et al.  The localization of Ca2+‐ATPase and Ca2+ binding proteins in the flagellum of guinea pig sperm , 1983 .

[222]  R. Patel-King,et al.  Identification of a Ca(2+)-binding light chain within Chlamydomonas outer arm dynein. , 1995, Journal of cell science.

[223]  D. Mitchell,et al.  Reversion analysis of dynein intermediate chain function. , 1993, Journal of cell science.

[224]  M. Okuno Inhibition and relaxation of sea urchin sperm flagella by vanadate , 1980, The Journal of cell biology.

[225]  D. Fawcett,et al.  The degeneration and disappearance of the centrioles during the development of the rat spermatozoon , 1973, The Anatomical record.

[226]  T Hamasaki,et al.  Ciliary beat frequency is controlled by a dynein light chain phosphorylation. , 1995, Biophysical journal.

[227]  K. Kanous,et al.  "Geometric clutch" hypothesis of axonemal function: key issues and testable predictions. , 1995, Cell motility and the cytoskeleton.

[228]  D. Carr,et al.  Inhibition of bovine spermatozoa by caudal epididymal fluid: I. Studies of a sperm motility quiescence factor. , 1984, Biology of reproduction.

[229]  I. Gibbons,et al.  External mechanical control of the timing of bend initiation in sea urchin sperm flagella. , 1989, Cell motility and the cytoskeleton.

[230]  D. Mastronarde,et al.  Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas , 1992, The Journal of cell biology.

[231]  C. Lindemann A "Geometric Clutch" Hypothesis to Explain Oscillations of the Axoneme of Cilia and Flagella , 1994 .

[232]  S. F. Goldstein,et al.  Motility of the 6 + 0 flagellum of lecudina tuzetae , 1982 .

[233]  B. Baccetti The evolution of the sperm tail. , 1982, Symposia of the Society for Experimental Biology.

[234]  A. Ginsburg Sperm-egg association and its relationship to the activation of the egg in salmonid fishes. , 1963, Journal of embryology and experimental morphology.

[235]  T. Miki-Noumura,et al.  Sliding velocity between outer doublet microtubules of sea-urchin sperm axonemes. , 1980, Journal of cell science.

[236]  G. Borisy,et al.  Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. , 1978, Journal of cell science.

[237]  A. Rowe,et al.  Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia , 1965, Science.

[238]  M. Murase Simulation of ciliary beating by an excitable dynein model: oscillations, quiescence and mechano-sensitivity. , 1990, Journal of theoretical biology.

[239]  E. Kurimoto,et al.  Ability of paralyzed flagella mutants of Chlamydomonas to move. , 1996, Cell motility and the cytoskeleton.

[240]  R. Kamiya,et al.  Functional reconstitution of Chlamydomonas outer dynein arms from alpha- beta and gamma subunits: requirement of a third factor , 1994, The Journal of cell biology.

[241]  M. Holwill,et al.  A sliding microtubule model incorporating axonemal twist and compatible with three-dimensional ciliary bending. , 1979, The Journal of experimental biology.

[242]  B. Morton,et al.  The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. , 1974, Biochemical and biophysical research communications.

[243]  R. Kamiya,et al.  Cyclical bending of two outer-doublet microtubules in frayed axonemes of chlamydomonas , 1986 .

[244]  I. Mabuchi,et al.  C/A dynein isolated from sea urchin sperm flagellar axonemes. Enzymatic properties and interaction with microtubules. , 1994, Journal of cell science.

[245]  M. Okuno,et al.  Cyclic AMP induces maturation of trout sperm axoneme to initiate motility , 1982, Nature.

[246]  P. J. Walker Organization of Function in Trypanosome Flagella , 1961, Nature.

[247]  R. Aitken,et al.  Relationship between calcium, cyclic AMP, ATP, and intracellular pH and the capacity of hamster spermatozoa to express hyperactivated motility. , 1989, Gamete research.

[248]  Y. Naitoh,et al.  Reactivated Triton-Extracted Models of Paramecium: Modification of Ciliary Movement by Calcium Ions , 1972, Science.

[249]  G. Piperno,et al.  Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[250]  D. Fawcett,et al.  Further observations on the structure of the mammalian sperm tail , 1961, The Anatomical record.

[251]  M. Holwill,et al.  A mechanochemical model of flagellar activity. , 1971, Biophysical journal.

[252]  A. Tyler,et al.  Motile Life of Bovine Spermatozoa in Glycine and Yolk-Citrate Diluents at High and Low Temperatures , 1952, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[253]  J. Tash,et al.  cAMP-dependent regulatory processes in the acquisition and control of sperm flagellar movement. , 1988, Progress in clinical and biological research.

[254]  R. Hard,et al.  Interdoublet sliding in bovine spermatozoa: its relationship to flagellar motility and the action of inhibitory agents. , 1996, Journal of structural biology.

[255]  J. Biggers,et al.  Fertilization and Embryonic Development In Vitro , 1981 .

[256]  D. Garbers,et al.  The stimulation of bovine epididymal sperm metabolism by cyclic nucleotide phosphodiesterase inhibitors. , 1973, Biology of reproduction.

[257]  H. Shimizu,et al.  A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges. , 1986, Journal of theoretical biology.

[258]  D. Fawcett The mammalian spermatozoon. , 1975, Developmental biology.

[259]  S. Gitelman,et al.  Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella , 1980, The Journal of cell biology.

[260]  R. Kamiya CHAPTER 18 – ROTATION OF THE CENTRAL-PAIR MICROTUBULES IN CHLAMYDOMONAS FLAGELLA , 1982 .

[261]  I. Gibbons,et al.  The Effect of Partial Extraction of Dynein Arms on the Movement of Reactivated Sea-urchin Sperm , 2022 .

[262]  G. Horridge,et al.  The relation between the orientation of the central fibrils and the direction of beat in cilia of Opalina , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[263]  M. Okuno CHAPTER 15 – CYCLIC AMP AND INITIATION OF FLAGELLAR MOVEMENT IN RAINBOW TROUT SPERMATOZOA , 1982 .

[264]  M. Holwill,et al.  A physical model of microtubule sliding in ciliary axonemes. , 1990, Biophysical journal.

[265]  R. Vale,et al.  Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin , 1991, The Journal of cell biology.

[266]  M. Murase Excitable dynein model with multiple active sites for large-amplitude oscillations and bend propagation in flagella. , 1991, Journal of theoretical biology.

[267]  R. Rikmenspoel,et al.  The contractile mechanism in cilia. , 1973, Biophysical journal.

[268]  T. Turner,et al.  Factors involved in the initiation of sperm motility. , 1978, Biology of reproduction.

[269]  D. Carr,et al.  Rat and Bull Sperm Immobilization in the Caudal Epididymis: A Comparison of Mechanisms , 1984 .

[270]  H. Kaneko,et al.  Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum. , 1973, The Journal of experimental biology.

[271]  P. Satir STUDIES ON CILIA , 1968, The Journal of cell biology.

[272]  G. Piperno,et al.  The proximal portion of Chlamydomonas flagella contains a distinct set of inner dynein arms , 1991, The Journal of cell biology.

[273]  C. Gagnon Controls of Sperm Motility: Biological and Clinical Aspects , 1990 .

[274]  H. E. Dale,et al.  Longevity of spermatozoa in the reproductive tract of the bitch. , 1967, Journal of reproduction and fertility.

[275]  I. Gibbons,et al.  Evidence for an inequality in the forces that generate principal and reverse bends in sperm flagella. , 1991, Journal of cell science.

[276]  J. Salisbury,et al.  Calcium-modulated contractile proteins associated with the eucaryotic centrosome. , 1986, Cell motility and the cytoskeleton.

[277]  D. Nelson,et al.  Differential regulation of Paramecium ciliary motility by cAMP and cGMP , 1988, The Journal of cell biology.

[278]  A. V. Grimstone,et al.  On Flagellar Structure in Certain Flagellates , 1960, The Journal of biophysical and biochemical cytology.

[279]  Gibbons Ir Chemical dissection of cilia. , 1965 .

[280]  C. Brokaw,et al.  cAMP‐dependent phosphorylation associated with activation of motility of Ciona sperm flagella , 1983 .

[281]  C. Lindemann A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation. , 1994, Cell motility and the cytoskeleton.

[282]  R. Santis,et al.  Initiation of Sperm Motility in Ciona intestinalis by Calcium and Cyclic AMP(Developmental Biology) , 1984 .

[283]  T. Hamasaki,et al.  cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[284]  M. Morisawa,et al.  Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. , 1980, Science.

[285]  E. Kurimoto,et al.  Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method. , 1991, Cell motility and the cytoskeleton.

[286]  G. Hancock The self-propulsion of microscopic organisms through liquids , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[287]  C. Kung,et al.  Calcium-Induced Ciliary Reversal in the Extracted Models of "Pawn," a Behavioral Mutant of Paramecium , 1973, Science.

[288]  Bessie Huang,et al.  Chlamydomonas reinhardtii: A Model System for the Genetic Analysis of Flagellar Structure and Motility , 1986 .

[289]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[290]  C. Shingyoji,et al.  Microtubule sliding in reactivated flagella. , 1982, Symposia of the Society for Experimental Biology.

[291]  C. Brokaw,et al.  Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. , 1974, Biochemical and biophysical research communications.

[292]  J. Goltz,et al.  Evidence for an increased sensitivity to Ca2+ in the flagella of sperm from tw32/+ mice , 1990, Molecular reproduction and development.

[293]  T. Tsuchiya Effects of calcium ions on triton-extracted lamellibranch gill cilia: Ciliary arrest response in a model system , 1977 .

[294]  D. Garbers,et al.  The effects of cyclic nucleotide phosphodiesterase inhibitors on ejaculated porcine spermatozoan metabolism. , 1973, Biology of reproduction.

[295]  D. Mitchell,et al.  Sequence analysis of the Chlamydomonas alpha and beta dynein heavy chain genes. , 1994, Journal of cell science.

[296]  W. Perloff,et al.  IN VIVO SURVIVAL OF SPERMATOZOA IN CERVICAL MUCUS. , 1964, American journal of obstetrics and gynecology.

[297]  C. Brokaw,et al.  Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. , 1987, Cell motility and the cytoskeleton.

[298]  W. Sale,et al.  Study of the mechanism of vanadate inhibition of the dynein cross-bridge cycle in sea urchin sperm flagella , 1979, The Journal of cell biology.

[299]  M. Ceglia,et al.  Hyperactivated motility induced in mouse sperm by calcium ionophore A23187 is reversible. , 1987, The Journal of experimental zoology.

[300]  M. Holwill THE MOTION OF STRIGOMONAS ONCOPELTI , 1965 .

[301]  K. Summers,et al.  The role of flagellar structures in motility. , 1975, Biochimica et biophysica acta.

[302]  R. Vale,et al.  One-dimensional diffusion of microtubules bound to flagellar dynein , 1989, Cell.

[303]  C. Yeung Inhibition of the ATP-induced reactivation of demembranated hamster spermatozoa by the action of free ATP4- and MgATP2-. , 1987, Journal of reproduction and fertility.

[304]  I. Gibbons,et al.  Adenosine triphosphate-induced motility and sliding of filaments in mammalian sperm extracted with Triton X-100 , 1975, The Journal of cell biology.

[305]  G. Melone,et al.  The Spermatozoon of Brachionus plicatilis(Rotifera, Monogononta) With Some Notes on Sperm Ultrastructure in Rotifera , 1994 .

[306]  F. Warner,et al.  Rebinding of Tetrahymena 13 S and 21 S dynein ATPases to extracted doublet microtubules. The inner row and outer row dynein arms. , 1985, Journal of cell science.

[307]  A. Izumi,et al.  cAMP‐mediated inhibitory effect of calmodulin antagonists on ciliary reversal of Paramecium , 1987 .

[308]  G. Parker 1 – Sperm Competition and the Evolution of Animal Mating Strategies , 1984 .

[309]  T. Hamasaki,et al.  Regulation of 22S dynein by a 29-kD light chain , 1994, The Journal of cell biology.

[310]  R. Rikmenspoel,et al.  Sperm Flagella: Autonomous Oscillations of the Contractile System , 1972, Science.

[311]  T. Miki-Noumura,et al.  Bending motion of Chlamydomonas axonemes after extrusion of central- pair microtubules , 1987, The Journal of cell biology.

[312]  H. Machemer,et al.  Analysis of three-dimensional ciliary beating by means of high-speed stereomicroscopy. , 1994, Biophysical journal.

[313]  C. Omoto,et al.  Activation of the dynein adenosinetriphosphatase by microtubules. , 1986, Biochemistry.

[314]  日本学術振興会,et al.  Biological functions of microtubules and related structures , 1982 .

[315]  H. Machemer,et al.  The ciliary cycle during hyperpolarization-induced activity: an analysis of axonemal functional parameters. , 1988, Cell motility and the cytoskeleton.

[316]  W. Sale,et al.  Microtubule binding and translocation by inner dynein arm subtype I1. , 1991, Cell motility and the cytoskeleton.

[317]  I. Gibbons,et al.  SOME PROPERTIES OF BOUND AND SOLUBLE DYNEIN FROM SEA URCHIN SPERM FLAGELLA , 1972, The Journal of cell biology.

[318]  R. Hammerstedt,et al.  Adenine nucleotide changes at initiation of bull sperm motility. , 1976, The Journal of biological chemistry.

[319]  G. Pazour,et al.  The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly , 1995, The Journal of cell biology.

[320]  R. Hard,et al.  Reactivation of newt lung cilia: evidence for a possible temperature- and MgATP-induced activation mechanism. , 1992, Cell motility and the cytoskeleton.

[321]  A. Izumi,et al.  Tetrahymena cell model exhibiting Ca-dependent behavior , 1985 .

[322]  C. Brokaw,et al.  Inhibition of movement of trition-demembranated sea-urchin sperm flagella by Mg2+, ATP4-, ADP and P1. , 1979, Journal of cell science.

[323]  S. Tamm Alternate patterns of doublet microtubule sliding in ATP-disintegrated macrocilia of the ctenophore Beroe , 1984, The Journal of cell biology.

[324]  J. Blum,et al.  On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model. , 1985, Biophysical journal.

[325]  U. Goodenough,et al.  Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella , 1985, The Journal of cell biology.

[326]  K. Inaba,et al.  Anthraniloyl ATP, a fluorescent analog of ATP, as a substrate for dynein ATPase and flagellar motility. , 1989, Archives of biochemistry and biophysics.

[327]  K. Johnson,et al.  Structure and molecular weight of the dynein ATPase , 1983, The Journal of cell biology.

[328]  M. Holwill,et al.  Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. , 1976, The Journal of experimental biology.

[329]  C. Brokaw,et al.  2-Chloro adenosine triphosphate as substrate for sea urchin axonemal movement. , 1989, Cell motility and the cytoskeleton.

[330]  P. Satir,et al.  Splitting the ciliary axoneme: implications for a "switch-point" model of dynein arm activity in ciliary motion. , 1989, Cell motility and the cytoskeleton.

[331]  C. Brokaw Computer simulation of movement-generating cross-bridges. , 1976, Biophysical journal.

[332]  Geoffrey Ingram Taylor,et al.  The action of waving cylindrical tails in propelling microscopic organisms , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[333]  R. Kamiya,et al.  Nanometer scale vibration in mutant axonemes of Chlamydomonas. , 1994, Cell motility and the cytoskeleton.

[334]  M. Sanderson,et al.  The antagonistic effects of 5-hydroxytryptamine and methylxanthine on the gill cilia of Mytilus edulis. , 1985, Cell motility.

[335]  K. Johnson,et al.  Kinetic evidence for multiple dynein ATPase sites. , 1983, The Journal of biological chemistry.

[336]  H. Mohri,et al.  ATP-driven tubule extrusion from axonemes without outer dynein arms of sea-urchin sperm flagella. , 1980, Journal of cell science.

[337]  B. Gibbons,et al.  Intermittent swimming in live sea urchin sperm , 1980, The Journal of cell biology.

[338]  K. E. Machin The control and synchronization of flagellar movement , 1963, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[339]  Sleigh Ma Patterns of ciliary beating. , 1968 .

[340]  C. Brokaw,et al.  Bending patterns of chlamydomonas flagella I. Wild-type bending patterns. , 1983, Cell motility.

[341]  J. Gray,et al.  The Movement of the Spermatozoa of the Bull , 1958 .

[342]  F. Warner Ciliary inter-microtubule bridges. , 1976, Journal of cell science.

[343]  H. Hoffmann-Berling Geisselmodelle und adenosintriphosphat (ATP) , 1955 .