Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland

This paper presents the applicability of combined Landsat Thematic Mapper and European Remote Sensing 2 synthetic aperture radar (SAR) data to turbidity, Secchi disk depth, and suspended sediment concentration retrievals in the Gulf of Finland. The results show that the estimated accuracy of these water quality variables using a neural network is much higher than the accuracy using simple and multivariate regression approaches. The results also demonstrate that SAR is only a marginally helpful to improve the estimation of these three variables for the practical use in the study area. However, the method still needs to be refined in the area under study.

[1]  E. Vermote,et al.  Operational Atmospheric Correction of Landsat TM Data , 1999 .

[2]  R. Carlson A trophic state index for lakes1 , 1977 .

[3]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[4]  Kendall L. Carder,et al.  Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS , 2001 .

[5]  L. A. Frulla,et al.  Environment contribution to the atmospheric correction for Landsat-MSS images , 1995 .

[6]  Juha Sarkkula,et al.  Modelled phytoplankton dynamics in the Gulf of Finland , 1998 .

[7]  T. M. Lillesand,et al.  Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters , 1991 .

[8]  S. Tassan Evaluation of the potential of the Thematic Mapper for marine application , 1987 .

[9]  P. Brivio,et al.  The satellite derived optical information for the comparative assessment of lacustrine water quality , 1997 .

[10]  S. Ouillon,et al.  A Three-Component Model of Ocean Color and Its Application in the Ebro River Mouth Area , 2000 .

[11]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  V. Krasnopolsky,et al.  A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager , 1995 .

[13]  H. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review , 1983 .

[14]  Louis Edward Keiner NEURAL NETWORKS AS NON-LINEAR FUNCTION APPROXIMATORS FOR REMOTE SENSING APPLICATIONS , 1999 .

[15]  Vladimir M. Krasnopolsky,et al.  A Neural Network Multiparameter Algorithm for SSM/I Ocean Retrievals , 2000 .

[16]  Xavier Pons,et al.  A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data , 1994 .

[17]  A. Khedr,et al.  Water quality assessment with simultaneous Landsat-5 TM at Manzala Lagoon, Egypt , 2001, Hydrobiologia.

[18]  F. R. Schiebe,et al.  Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data , 1992 .

[19]  J. Pulliainen,et al.  Applicability of Combined Microwave and Optical Data for Surface Water Quality Retrievals — Abstract , 2002 .

[20]  M. Hallikainen Laboratory of Space Technology , 1993 .

[21]  Arnold G. Dekker,et al.  Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data , 2002 .

[22]  E. Hurtado,et al.  Comparison of two atmospheric correction methods for Landsat TM thermal band , 1996 .

[23]  Xiao‐Hai Yan,et al.  A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery , 1998 .

[24]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[25]  P. Lavery,et al.  WATER QUALITY MONITORING IN ESTUARINE WATERS USING THE LANDSAT THEMATIC MAPPER , 1993 .

[26]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[27]  C. Giardino,et al.  Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images , 2001 .

[28]  R. Richter A fast atmospheric correction algorithm applied to Landsat TM images , 1990 .

[29]  A. Dekker,et al.  The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. , 1993 .

[30]  J. Pulliainen,et al.  A semi-operative approach to lake water quality retrieval from remote sensing data. , 2001, The Science of the total environment.

[31]  J. Munday,et al.  Water Quality Analysis by Digital Chromaticity Mapping of Landsat Data , 1978 .

[32]  S. Ouillon,et al.  Surface suspended matter off the Rhone river mouth from visible satellite imagery , 1998 .

[33]  Roland Doerffer,et al.  Analysis of thematic mapper data for studying the suspended matter distribution in the coastal area of the German Bight (North Sea) , 1989 .

[34]  María Amparo Gilabert,et al.  An atmospheric correction method for the automatic retrieval of surface reflectances from TM images , 1994 .

[35]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[36]  Donald C. Pierson,et al.  Manual for Monitoring European Lakes using Remote Sensing Techniques , 1999 .

[37]  F. Muller‐Karger,et al.  Noise Reduction and Atmospheric Correction for Coastal Applications of Landsat Thematic Mapper Imagery , 1999 .

[38]  D. Pierson,et al.  Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper. , 2001, The Science of the total environment.