Local convergence of some iterative methods for generalized equations
暂无分享,去创建一个
[1] A. Ostrowski. Solution of equations and systems of equations , 1967 .
[2] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[3] An inverse function theorem , 1971 .
[4] A. Ioffe,et al. Theory of extremal problems , 1979 .
[5] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[6] Jean-Pierre Aubin,et al. Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..
[7] R. Rockafellar,et al. Lipschitzian properties of multifunctions , 1985 .
[8] J. Aubin. Set-valued analysis , 1990 .
[9] Academia Română. Filiale Cluj-Napoca. Revue d'analyse numérique et de théorie de l'approximation , 1992 .
[10] S. Smale,et al. Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .
[11] B. Mordukhovich. Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .
[12] On some iterative methods for solving nonlinear equations , 1994 .
[13] William W. Hager,et al. An inverse mapping theorem for set-valued maps , 1994 .
[14] A. Dontchev. Local convergence of the Newton method for generalized equations , 1996 .
[15] S. Smale,et al. The mathematics of numerical analysis , 1996 .
[16] R. Tyrrell Rockafellar,et al. Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..
[17] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[18] Jean-Claude Yakoubsohn. Finding Zeros of Analytic Functions: alpha Theory for Secant Type Methods , 1999, J. Complex..
[19] Jean-Claude Yakoubsohn. Finding Zeros of Analytic Functions : : Theory for Secant Type Methods , 1999 .
[20] A. Piétrus. Generalized equations under mild differentiability conditions. , 2000 .
[21] Does Newton's method for set-valued maps converges uniformly in mild differentiability context? , 2000 .
[22] Alain Pietrus. Does Newton's method converges uniformly in mild differentiability context? , 2000 .
[23] Saïd Hilout,et al. Acceleration of convergence in Dontchev's iterative method for solving variational inclusions , 2003 .