Local convergence of some iterative methods for generalized equations

[1]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[2]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[3]  An inverse function theorem , 1971 .

[4]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[5]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[6]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[7]  R. Rockafellar,et al.  Lipschitzian properties of multifunctions , 1985 .

[8]  J. Aubin Set-valued analysis , 1990 .

[9]  Academia Română. Filiale Cluj-Napoca Revue d'analyse numérique et de théorie de l'approximation , 1992 .

[10]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[11]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[12]  On some iterative methods for solving nonlinear equations , 1994 .

[13]  William W. Hager,et al.  An inverse mapping theorem for set-valued maps , 1994 .

[14]  A. Dontchev Local convergence of the Newton method for generalized equations , 1996 .

[15]  S. Smale,et al.  The mathematics of numerical analysis , 1996 .

[16]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[17]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[18]  Jean-Claude Yakoubsohn Finding Zeros of Analytic Functions: alpha Theory for Secant Type Methods , 1999, J. Complex..

[19]  Jean-Claude Yakoubsohn Finding Zeros of Analytic Functions : : Theory for Secant Type Methods , 1999 .

[20]  A. Piétrus Generalized equations under mild differentiability conditions. , 2000 .

[21]  Does Newton's method for set-valued maps converges uniformly in mild differentiability context? , 2000 .

[22]  Alain Pietrus Does Newton's method converges uniformly in mild differentiability context? , 2000 .

[23]  Saïd Hilout,et al.  Acceleration of convergence in Dontchev's iterative method for solving variational inclusions , 2003 .