High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments.

We present micro-integrated diode laser modules operating at wavelengths of 767 and 780 nm for cold quantum gas experiments on potassium and rubidium. The master-oscillator-power-amplifier concept provides both narrow linewidth emission and high optical output power. With a linewidth (10 μs) below 1 MHz and an output power of up to 3 W, these modules are specifically suited for quantum optics experiments and feature the robustness required for operation at a drop tower or on-board a sounding rocket. This technology development hence paves the way toward precision quantum optics experiments in space.

[1]  A. Peters,et al.  First gravity measurements using the mobile atom interferometer GAIN , 2013 .

[2]  K. Kikuchi,et al.  Novel method for high resolution measurement of laser output spectrum , 1980 .

[3]  Olaf Brox,et al.  Distributed feedback lasers in the 760 to 810 nm range and epitaxial grating design , 2014 .

[4]  C. Lämmerzahl,et al.  Testing the equivalence principle with atomic interferometry , 2012 .

[5]  T. Hänsch,et al.  Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. , 2004, Physical review letters.

[6]  Achim Peters,et al.  Accurate frequency noise measurement of free-running lasers. , 2014, Applied optics.

[7]  Keith J. Kasunic,et al.  Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier , 2002 .

[8]  Gilberto Saccorotti,et al.  Precision gravimetry with atomic sensors , 2009 .

[9]  Steven Chu,et al.  Precision measurement of ℏ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry , 1994 .

[10]  M. Kasevich,et al.  Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.

[11]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[12]  A. Landragin,et al.  Dual-wavelength laser source for onboard atom interferometry. , 2011, Optics letters.

[13]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[14]  B. Faure,et al.  A laser setup for rubidium cooling dedicated to space applications , 2013, 1309.2075.

[15]  W. Schleich,et al.  A freely falling magneto-optical trap drop tower experiment , 2007 .

[16]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[17]  A. Wicht,et al.  A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .

[18]  G. Erbert,et al.  Optimization of 780 nm DFB diode lasers for high-power narrow linewidth emission , 2012 .

[19]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[20]  Alexander Sahm,et al.  Micro-integrated 1 Watt semiconductor laser system with a linewidth of 3.6 kHz. , 2011, Optics express.

[21]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.