Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1

Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI: http://dx.doi.org/10.7554/eLife.00324.001

[1]  W. Ji,et al.  Effect of low dose bisphenol A on the early differentiation of human embryonic stem cells into mammary epithelial cells. , 2013, Toxicology letters.

[2]  S. P. Srinivas,et al.  Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. , 2013, ACS nano.

[3]  T. Pawson,et al.  Soluble FLT1 Binds Lipid Microdomains in Podocytes to Control Cell Morphology and Glomerular Barrier Function , 2012, Cell.

[4]  A. Kijlstra,et al.  AAV2-Mediated Subretinal Gene Transfer of mIL-27p28 Attenuates Experimental Autoimmune Uveoretinitis in Mice , 2011, PloS one.

[5]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[6]  Samir Sissaoui,et al.  Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis , 2011, Vascular cell.

[7]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[8]  Ivana K. Kim,et al.  In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[9]  H. Grossniklaus,et al.  Age-Related Retinopathy in NRF2-Deficient Mice , 2011, PloS one.

[10]  Ivana K. Kim,et al.  Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[11]  R. Braun,et al.  DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration , 2011, Nature.

[12]  M. Schachner,et al.  Short DNA sequences inserted for gene targeting can accidentally interfere with off‐target gene expression , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[13]  L. Groome,et al.  Proteases and sFlt-1 release in the human placenta. , 2010, Placenta.

[14]  M. Rajappa,et al.  Ocular angiogenesis: mechanisms and recent advances in therapy. , 2010, Advances in clinical chemistry.

[15]  Magali Saint-Geniez,et al.  An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris , 2009, Proceedings of the National Academy of Sciences.

[16]  G. Alessio,et al.  Combined cataract extraction and intravitreal bevacizumab in eyes with choroidal neovascularization resulting from age‐related macular degeneration , 2009, Journal of cataract and refractive surgery.

[17]  K. Becker,et al.  VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis , 2009, Proceedings of the National Academy of Sciences.

[18]  Shuliang Jiao,et al.  Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography. , 2009, Optics express.

[19]  Christian Fischer,et al.  FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? , 2008, Nature Reviews Cancer.

[20]  Magali Saint-Geniez,et al.  Endogenous VEGF Is Required for Visual Function: Evidence for a Survival Role on Müller Cells and Photoreceptors , 2008, PloS one.

[21]  G. Pertile,et al.  Implications of bevacizumab on vascular endothelial growth factor and endostatin in human choroidal neovascularisation , 2008, British Journal of Ophthalmology.

[22]  Christian Ahlers,et al.  Time course of morphologic effects on different retinal compartments after ranibizumab therapy in age-related macular degeneration. , 2008, Ophthalmology.

[23]  Victoria L. Bautch,et al.  The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching , 2008, The Journal of cell biology.

[24]  I. Bhutto,et al.  Reduction of endogenous angiogenesis inhibitors in Bruch's membrane of the submacular region in eyes with age-related macular degeneration. , 2008, Archives of ophthalmology.

[25]  Justine R. Smith,et al.  Sequence- and target-independent angiogenesis suppression by siRNA via TLR3 , 2008, Nature.

[26]  D. Zack,et al.  Inducible expression of cre recombinase in the retinal pigmented epithelium. , 2008, Investigative ophthalmology & visual science.

[27]  Paul G. Updike,et al.  Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration. , 2007, Investigative ophthalmology & visual science.

[28]  P. Sieving,et al.  Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[29]  K. Rajewsky,et al.  Vagaries of conditional gene targeting , 2007, Nature Immunology.

[30]  P. Jani,et al.  Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier , 2006, British Journal of Ophthalmology.

[31]  Toxic alert , 2007, Nature.

[32]  Kei Shinoda,et al.  Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Martin Collinson,et al.  Corneal avascularity is due to soluble VEGF receptor-1 , 2006, Nature.

[34]  F. Peale,et al.  Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice. , 2006, Blood.

[35]  M. C. Donati,et al.  Retinal Angiomatous Proliferation: Association with Clinical and Angiographic Features , 2005, Ophthalmologica.

[36]  I. Constable,et al.  Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[37]  H. Ghandehari,et al.  Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  P. Campochiaro,et al.  Nonviral ocular gene transfer , 2005, Gene Therapy.

[39]  J. Ott,et al.  Complement Factor H Polymorphism in Age-Related Macular Degeneration , 2005, Science.

[40]  Y. Sauve,et al.  Rhodopsin‐iCre transgenic mouse line for Cre‐mediated rod‐specific gene targeting , 2005, Genesis.

[41]  Bart Landuyt,et al.  Vascular Endothelial Growth Factor and Angiogenesis , 2004, Pharmacological Reviews.

[42]  Frank Schaeffel,et al.  A paraxial schematic eye model for the growing C57BL/6 mouse , 2004, Vision Research.

[43]  A. Bill,et al.  Physiology of the choroidal vascular bed , 1983, International Ophthalmology.

[44]  Eiji Sakurai,et al.  An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice , 2003, Nature Medicine.

[45]  P. Lacal,et al.  Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for theα 5β1 integrin , 2003, Journal of Cell Science.

[46]  M. Seeliger,et al.  Long‐term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV‐mediated gene replacement therapy , 2003, The journal of gene medicine.

[47]  Martin Friedlander,et al.  MOUSE MODEL OF SUBRETINAL NEOVASCULARIZATION WITH CHOROIDAL ANASTOMOSIS , 2003, Retina.

[48]  Sonia H Yoo,et al.  Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. , 2003, Survey of ophthalmology.

[49]  U. Storb,et al.  Insertion of Phosphoglycerine Kinase (Pgk)-Neo 5′ of Jλ1 Dramatically Enhances Vjλ1 Rearrangement , 2001, The Journal of experimental medicine.

[50]  R. D'Amato,et al.  Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. , 2001, The American journal of pathology.

[51]  A Kijlstra,et al.  Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. , 1999, The American journal of pathology.

[52]  M Aguet,et al.  VEGF is required for growth and survival in neonatal mice. , 1999, Development.

[53]  T. Noda,et al.  Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Campochiaro,et al.  Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. , 1997, The American journal of pathology.

[55]  R. Kendall,et al.  Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. , 1996, Biochemical and biophysical research communications.

[56]  J. Rossant,et al.  Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium , 1995, Nature.

[57]  R. Frank,et al.  Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. , 1994, Investigative ophthalmology & visual science.

[58]  R. Kendall,et al.  Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.