A modified complex K-best scheme for high-speed hard-output MIMO detectors

The current literature lacks the VLSI realization of high-order multiple-input-multiple-output (MIMO) detectors in the complex domain, which finds applications in advanced wireless standards such as WiMAX and Long Term Evolution (LTE) systems. In this paper, a novel modified complex K-Best algorithm and its VLSI implementation for a 4൴, 64QAM complex MIMO detector are proposed. The main contributions of this paper are the modified hard-output complex K-Best algorithm as well as its efficient architecture, which is well-suited for a pipelined VLSI implementation. By using an efficient fast multiplier and applying both fine-grain pipelining and coarse-grain pipelining to the architecture of the MIMO detector, an improved critical path is obtained, which results in a higher throughput. Complexity analysis and the synthesis results in a 0.18µ CMOS technology show that compared to the reported VLSI implementations in both the real domain and complex domain, the proposed architecture achieves the highest reported throughput. The proposed architecture is fully in parallel with a fixed critical path independent of the constellation order, which can result in a throughput up to 1Gbps.

[1]  P. Glenn Gulak,et al.  A 0.13µm CMOS 655Mb/s 4×4 64-QAM K-Best MIMO detector , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[2]  Zhan Guo,et al.  Algorithm and implementation of the K-best sphere decoding for MIMO detection , 2006, IEEE Journal on Selected Areas in Communications.

[3]  A. Burg,et al.  VLSI implementation of MIMO detection using the sphere decoding algorithm , 2005, IEEE Journal of Solid-State Circuits.

[4]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[5]  P. Glenn Gulak,et al.  A pipelined scalable high-throughput implementation of a near-ML K-best complex lattice decoder , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[7]  Tong Zhang,et al.  Relaxed $K$ -Best MIMO Signal Detector Design and VLSI Implementation , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Tong Zhang,et al.  Low power soft-output signal detector design for wireless MIMO communication systems , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[9]  Andreas Peter Burg,et al.  K-best MIMO detection VLSI architectures achieving up to 424 Mbps , 2006, 2006 IEEE International Symposium on Circuits and Systems.