Tableau Games for Coalition Logic and Alternating-time Temporal Logic — theory and implementation
暂无分享,去创建一个
[1] Fausto Giunchiglia,et al. SAT-Based Decision Procedures for Classical Modal Logics , 2004, Journal of Automated Reasoning.
[2] D. Gabbay,et al. Handbook of tableau methods , 1999 .
[3] V. Goranko. Coalition games and alternating temporal logics , 2001 .
[4] Jennifer Nacht,et al. Modal Logic An Introduction , 2016 .
[5] Igor Walukiewicz. A Complete Deductive System for the-Calculus , 1995, LICS 1995.
[6] Claude Kirchner,et al. An overview of ELAN , 1998, WRLA.
[7] Joseph Y. Halpern,et al. Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.
[8] A. K. Chandra,et al. Alternation , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).
[9] Helle Hvid Hansen,et al. Axiomatising Nash-Consistent Coalition Logic , 2002, JELIA.
[10] Berndt Farwer,et al. ω-automata , 2002 .
[11] Martin Lange,et al. Focus games for satisfiability and completeness of temporal logic , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[12] C. Kirchner,et al. Introduction to the Rewriting Calculus , 1999 .
[13] Thomas A. Henzinger,et al. Alternating-time temporal logic , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[14] Ullrich Hustadt,et al. On Evaluating Decision Procedures for Modal Logic , 1997, IJCAI.
[15] Marc Pauly,et al. A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..
[16] Chang Liu,et al. Term rewriting and all that , 2000, SOEN.
[17] Marcus Kracht,et al. Normal monomodal logics can simulate all others , 1999, Journal of Symbolic Logic.
[18] Ariel Rubinstein,et al. A Course in Game Theory , 1995 .
[19] Bernhard Beckert,et al. System Description: leanK 2.0 , 1998, CADE.
[20] Peter A. Flach. First-Order Logic , 2018, Encyclopedia of Machine Learning.
[21] Rajeev Goré,et al. Tableau Methods for Modal and Temporal Logics , 1999 .
[22] Marcello D'Agostino,et al. Tableau Methods for Classical Propositional Logic , 1999 .
[23] Projektgruppe WINOPostfa. A Terminological Knowledge Representation System with Complete Inference Algorithms , 1991 .
[24] John Yen,et al. Introduction , 2004, CACM.
[25] Govert van Drimmelen,et al. Satisfiability in Alternating-time Temporal Logic , 2003, LICS.
[26] Evert W. Beth,et al. Semantic Entailment And Formal Derivability , 1955 .
[27] Marc Pauly,et al. Logic for social software , 2000 .
[28] Ian Horrocks,et al. Using an Expressive Description Logic: FaCT or Fiction? , 1998, KR.
[29] Peter Lammich,et al. Tree Automata , 2009, Arch. Formal Proofs.
[30] A. Herzig,et al. From Classical to Normal Modal Logics , 1996 .
[31] Peter F. Patel-Schneider,et al. DLP System Description , 1998, Description Logics.
[32] Martin Lange,et al. Games for modal and temporal logics , 2003 .
[33] Marco Hollenberg,et al. Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.
[34] Moshe Y. Vardi. On the complexity of epistemic reasoning , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[35] E. Allen Emerson,et al. Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[36] Bernhard Beckert,et al. leanK 2.0 , 1998, TABLEAUX.
[37] Dominique Longin,et al. Lotrec : The Generic Tableau Prover for Modal and Description Logics , 2001, IJCAR.
[38] A. Arnold,et al. Rudiments of μ-calculus , 2001 .
[39] Fausto Giunchiglia,et al. Building Decision Procedures for Modal Logics from Propositional Decision Procedure - The Case Study of Modal K , 1996, CADE.
[40] Igor Walukiewicz,et al. Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..
[41] Bernhard Beckert,et al. Free Variable Tableaux for Propositional Modal Logics , 1997, TABLEAUX.
[42] Guido Governatori,et al. Labelled Tableaux for Non-normal Modal Logics , 1999, AI*IA.
[43] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[44] I. Walukiewicz. Games for the -calculus , 2007 .