Ultrahigh Error Threshold for Surface Codes with Biased Noise.

We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.

[1]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[2]  Stephen D. Bartlett,et al.  Tailored codes for small quantum memories , 2017, 1703.08179.

[3]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[4]  Sean D. Barrett,et al.  Logical error rate scaling of the toric code , 2013, 1312.5213.

[5]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[6]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[7]  John Preskill,et al.  Optimal Bacon-Shor codes , 2012, Quantum Inf. Comput..

[8]  Earl T. Campbell,et al.  Fast decoders for qudit topological codes , 2013, 1311.4895.

[9]  James R. Wootton,et al.  High threshold error correction for the surface code. , 2012, Physical review letters.

[10]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[11]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[12]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[13]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[14]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[15]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[16]  Jean-Pierre Tillich,et al.  A decoding algorithm for CSS codes using the X/Z correlations , 2014, 2014 IEEE International Symposium on Information Theory.

[17]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[18]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[19]  Liang Jiang,et al.  Deep Neural Network Probabilistic Decoder for Stabilizer Codes , 2017, Scientific Reports.

[20]  P. Baireuther,et al.  Machine-learning-assisted correction of correlated qubit errors in a topological code , 2017, 1705.07855.

[21]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[22]  Hussain Anwar,et al.  Fast fault-tolerant decoder for qubit and qudit surface codes , 2014, 1411.3028.

[23]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[24]  D. Poulin,et al.  Reducing the overhead for quantum computation when noise is biased , 2015, 1509.05032.

[25]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[26]  James R. Wootton,et al.  Incoherent dynamics in the toric code subject to disorder , 2011, 1112.1613.

[27]  John Preskill,et al.  Fault-tolerant quantum computation with asymmetric Bacon-Shor codes , 2012, 1211.1400.

[28]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[29]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[30]  James R. Wootton,et al.  Efficient Markov chain Monte Carlo algorithm for the surface code , 2013, 1302.2669.

[31]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[32]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[33]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[34]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[35]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[36]  Austin G. Fowler,et al.  Optimal complexity correction of correlated errors in the surface code , 2013, 1310.0863.

[37]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[38]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .