Accelerating and retarding anomalous diffusion

In this paper Gaussian models of retarded and accelerated anomalous diffusion are considered. Stochastic differential equations of fractional order driven by single or multiple fractional Gaussian noise terms are introduced to describe retarding and accelerating subdiffusion and superdiffusion. Short and long time asymptotic limits of the mean squared displacement of the stochastic processes associated with the solutions of these equations are studied. Specific cases of these equations are shown to provide possible descriptions of retarding or accelerating anomalous diffusion.

[1]  S. C. Lim,et al.  Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation , 2009, 0905.0303.

[2]  J. Klafter,et al.  Fractional brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. , 2009, Physical review letters.

[3]  Jörg Kärger,et al.  Diffusion in Zeolites and Other Microporous Solids , 1992 .

[4]  P. Christophersen,et al.  Single-file diffusion through the Ca2+-activated K+ channel of human red cells , 2005, The Journal of Membrane Biology.

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[7]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[8]  H. Vincent Poor,et al.  Signal detection in fractional Gaussian noise , 1988, IEEE Trans. Inf. Theory.

[9]  S. C. Lim,et al.  Fractional generalized Langevin equation approach to single-file diffusion , 2009, 0910.4734.

[10]  U. Gösele,et al.  Diffusion in Semiconductors , 2005 .

[11]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[12]  P. Heitjans,et al.  Diffusion in Condensed Matter: Methods, Materials, Models , 2012 .

[13]  Golan Bel,et al.  Weak Ergodicity Breaking in the Continuous-Time Random Walk , 2005 .

[14]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[15]  Ya. L. Kobelev,et al.  Anomalous diffusion with time-and coordinate-dependent memory , 2003 .

[16]  I. Bronshtein,et al.  Ergodicity convergence test suggests telomere motion obeys fractional dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[18]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[19]  A. Fulínski,et al.  Anomalous diffusion and weak nonergodicity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  G. Rangarajan,et al.  Processes with Long-Range Correlations , 2003 .

[21]  J. Hutchison,et al.  Precipitation of oxygen at 485 °C: Direct evidence for accelerated diffusion of oxygen in silicon? , 1985 .

[22]  M. Weiss,et al.  Elucidating the origin of anomalous diffusion in crowded fluids. , 2009, Physical review letters.

[23]  A. Benassi,et al.  Identification of the Hurst Index of a Step Fractional Brownian Motion , 2000 .

[24]  Time dependent anomalous diffusion for flow in multi-fractal porous media , 1990 .

[25]  Ralf Metzler,et al.  Fractional dynamics : recent advances , 2011 .

[26]  S. C. Lim,et al.  Fractional Langevin equations of distributed order. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[28]  K. Burnecki,et al.  Fractional Lévy stable motion can model subdiffusive dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Patrick Cheridito Mixed fractional Brownian motion , 2001 .

[30]  Geisel,et al.  Accelerated diffusion in Josephson junctions and related chaotic systems. , 1985, Physical review letters.

[31]  Ralf Jungmann,et al.  Quantitative analysis of single particle trajectories: mean maximal excursion method. , 2010, Biophysical journal.

[32]  Clemens Bechinger,et al.  Single-file diffusion of colloids in one-dimensional channels. , 2000, Physical review letters.

[33]  I. Sokolov,et al.  Anomalous transport : foundations and applications , 2008 .

[34]  D. Reichman,et al.  Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. , 2004, Physical review letters.

[35]  A. T. Fiory,et al.  Boron-enhanced diffusion of boron from ultralow-energy ion implantation , 1999 .

[36]  Y. Garini,et al.  Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. , 2009, Physical review letters.

[37]  Krishna B. Athreya,et al.  Probability, statistics, and their applications : papers in honor of Rabi Bhattacharya , 2003 .

[38]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[39]  A. Reynolds,et al.  Stochastic modeling of protein motions within cell membranes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S. C. Lim,et al.  Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type , 2001 .

[41]  S. Perri,et al.  Evidence of Superdiffusive Transport of Electrons Accelerated at Interplanetary Shocks , 2007 .

[42]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[43]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[45]  M. Saxton Anomalous diffusion due to binding: a Monte Carlo study. , 1996, Biophysical journal.

[46]  Fractional Brownian Motion as a Differentiable Generalized Gaussian Process , 2003 .

[47]  S. C. Lim,et al.  Generalized Ornstein–Uhlenbeck processes and associated self-similar processes , 2003 .

[48]  Bruce J. West,et al.  Fractal dimensionality of Lévy processes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Stefan Samko,et al.  Fractional integration and differentiation of variable order , 1995 .

[50]  E. Cox,et al.  Physical nature of bacterial cytoplasm. , 2006, Physical review letters.

[51]  W. B. Lindquist,et al.  A theory of macrodispersion for the scale-up problem , 1993 .

[52]  Hong Qian,et al.  Fractional Brownian Motion and Fractional Gaussian Noise , 2003 .

[53]  Igor M. Sokolov,et al.  Fractional diffusion in inhomogeneous media , 2005 .

[54]  J. L. Véhel,et al.  A Central Limit Theorem for the Generalized Quadratic Variation of the Step Fractional Brownian Motion , 2007 .

[55]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  M. Meerschaert,et al.  Stochastic model for ultraslow diffusion , 2006 .

[57]  Charles El-Nouty The fractional mixed fractional Brownian motion , 2003 .

[58]  P. Zaumseil,et al.  Retarded and enhanced dopant diffusion in silicon related to implantation-induced excess vacancies and interstitials , 1987 .

[59]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[60]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[61]  When does fractional Brownian motion not behave as a continuous function with bounded variation , 2010, 1004.1071.

[62]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[63]  Aubrey V. Weigel,et al.  Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking , 2011, Proceedings of the National Academy of Sciences.