Lipschitz behaviour of the Legendre-Fenchel Transform

We give estimates of the modulus of continuity of the Legendre-Fenchel Transform with respect to the Attouch-Wets uniformity. We point out the local Lipschitz behaviour of the conjugacy operation when endowing the set of closed proper convex functions defined on a normed vector space with suitable families of semimetrics.

[1]  Roberto Lucchetti,et al.  The EPI-Distance Topology: Continuity and Stability Results with Applications to Convex Optimization Problems , 1992, Math. Oper. Res..

[2]  Jean-Paul Penot,et al.  Preservation of persistence and stability under intersections and operations, part 1: Persistence , 1993 .

[3]  H. Rådström An embedding theorem for spaces of convex sets , 1952 .

[4]  Kerry Back,et al.  Convergence of Lagrange Multipliers and Dual Variables for Convex Optimization Problems , 1988, Math. Oper. Res..

[5]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[6]  Jonathan M. Borwein,et al.  A NOTE ON "-SUBGRADIENTS AND MAXIMAL MONOTONICITY , 1982 .

[7]  Roberto Lucchetti,et al.  The topology of theρ-hausdorff distance , 1991 .

[8]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[9]  Roger J.-B. Wets,et al.  ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM , 1986 .

[10]  J. Hiriart-Urruty Lipschitz $r$-continuity of the approximative subdifferential of a convex function. , 1980 .

[11]  Gerald Beer,et al.  On some inverse stability problems for the epigraphical sum , 1991 .

[12]  Gerald Beer,et al.  Conjugate convex functions and the epi-distance topology , 1990 .

[13]  Jean-Paul Penot,et al.  Operations on convergent families of sets and functions , 1990 .

[14]  Roger J.-B. Wets,et al.  Continuity of some convex-cone-valued mappings , 1967 .

[15]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[16]  Jean-Paul Penot,et al.  The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity , 1991 .

[17]  Jean-Paul Penot,et al.  Topologies and convergences on the space of convex functions , 1992 .

[18]  D. Azé,et al.  Intrinsic Bounds for Kuhn-Tucker Points of Perturbed Convex Programs , 1995 .

[19]  Roberto Lucchetti,et al.  Convex optimization and the epi-distance topology , 1991 .

[20]  R. Wets,et al.  Quantitative stability of variational systems. I. The epigraphical distance , 1991 .

[21]  J. Penot,et al.  Uniformly convex and uniformly smooth convex functions , 1995 .

[22]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[23]  M. Théra,et al.  Attouch-Wets convergence and a differential operator for convex functions , 1994 .

[24]  Roger J.-B. Wets,et al.  Quantitative Stability of Variational Systems II. A Framework for Nonlinear Conditioning , 1993, SIAM J. Optim..

[25]  J. Hiriart-Urruty A General Formula on the Conjugate of the Difference of Functions , 1986, Canadian Mathematical Bulletin.

[26]  J. Hiriart-Urruty Extension of Lipschitz functions , 1980 .

[27]  H. Attouch Variational convergence for functions and operators , 1984 .

[28]  E. J. McShane,et al.  Extension of range of functions , 1934 .