Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite

The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research.

[1]  H. Nagasawa,et al.  Localization of intracrystalline organic macromolecules in mollusk shells , 2011 .

[2]  A. Fitch,et al.  The Microstructure of Biogenic Calcite: A View by High‐Resolution Synchrotron Powder Diffraction , 2006 .

[3]  Andreas Scholl,et al.  Gradual ordering in red abalone nacre. , 2008, Journal of the American Chemical Society.

[4]  A. Baronnet,et al.  Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the Pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometre ranges , 2008, Mineralogical Magazine.

[5]  D. J. Barber,et al.  A tem microstructural study of dolomite with curved faces (saddle dolomite) , 1985 .

[6]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[7]  H. Nagasawa,et al.  Microstructural Variation of Biogenic Calcite with Intracrystalline Organic Macromolecules , 2012 .

[8]  A. Searl Saddle dolomite: a new view of its nature and origin , 1989, Mineralogical Magazine.

[9]  T. Koetzle,et al.  Biological Control of Crystal Texture: A Widespread Strategy for Adapting Crystal Properties to Function , 1993, Science.

[10]  J. García‐Ruiz,et al.  Morphogenesis of Self-Assembled Nanocrystalline Materials of Barium Carbonate and Silica , 2009, Science.

[11]  Y. Dauphin Soluble Organic Matrices of the Calcitic Prismatic Shell Layers of Two Pteriomorphid Bivalves , 2003, The Journal of Biological Chemistry.

[12]  K. Saruwatari,et al.  Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata. , 2009, Biomaterials.

[13]  S. Coppersmith,et al.  Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[14]  J. Stolarski,et al.  Hierarchically structured scleractinian coral biocrystals. , 2008, Journal of structural biology.

[15]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[16]  Y. Dauphin The nanostructural unity of Mollusc shells , 2008, Mineralogical Magazine.

[17]  H. D. Keith,et al.  A Phenomenological Theory of Spherulitic Crystallization , 1963 .

[18]  J. García‐Ruiz,et al.  Silica Biomorphs: Complex Biomimetic Hybrid Materials from “Sand and Chalk” , 2012 .

[19]  A. Putnis,et al.  Nano-cluster composite structure of calcitic sponge spicules--a case study of basic characteristics of biominerals. , 2006, Journal of inorganic biochemistry.

[20]  K. Saruwatari,et al.  Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques. , 2010, Journal of structural biology.

[21]  H. Nagasawa,et al.  Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata. , 2010, Micron.

[22]  J. Quintana,et al.  Anisotropic lattice distortions in biogenic aragonite , 2004, Nature materials.

[23]  H. Paul TEM Orientation Imaging in Characterization of Texture Changes in FCC Metals , 2010 .

[24]  H. Mutvei Ultrastructural Characteristics of the Nacre in Some Gastropods , 1978 .

[25]  Y. Dauphin Nanostructures de la nacre des tests de céphalopodes actuels , 2001 .

[26]  A. Rodríguez-Navarro,et al.  Crystallographic reorganization of the calcitic prismatic layer of oysters. , 2009, Journal of structural biology.

[27]  K. Kunze,et al.  ‘Brittle’ shear zones in experimentally deformed quartz single crystals , 2006 .

[28]  A. Baronnet,et al.  Crystallization in organo-mineral micro-domains in the crossed-lamellar layer of Nerita undata (Gastropoda, Neritopsina). , 2012, Micron.

[29]  J. Quintana,et al.  Anisotropic lattice distortions in the mollusk-made aragonite: a widespread phenomenon. , 2006, Journal of structural biology.

[30]  M. Burghammer,et al.  Structure-property relationships of a biological mesocrystal in the adult sea urchin spine , 2012, Proceedings of the National Academy of Sciences.

[31]  Y. Kauffmann,et al.  Inhomogeneity of Nacre Lamellae on the Nanometer Length Scale , 2012 .

[32]  H. Xin,et al.  Calcite Prisms from Mollusk Shells (Atrina Rigida): Swiss‐cheese‐like Organic–Inorganic Single‐crystal Composites , 2011 .

[33]  J. Susini,et al.  In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. , 2003, Journal of structural biology.

[34]  C. Trepmann,et al.  Crystal-plastic deformation and recrystallization of peridotite controlled by the seismic cycle , 2012 .

[35]  M. Cusack,et al.  Crystallography (Electron Backscatter Diffraction) and Chemistry (Electron Probe Microanalysis) of the Avian Eggshell , 2006 .

[36]  P. Fratzl,et al.  Nanostructure of biogenic calcite crystals : a view by small-angle X-ray scattering , 2011 .