A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem
暂无分享,去创建一个
Rumen Andonov | Arnaud Fréville | Nicola Yanev | Stefan Balev | A. Fréville | Stefan Balev | R. Andonov | N. Yanev
[1] Eugene Levner,et al. Computational Complexity of Approximation Algorithms for Combinatorial Problems , 1979, MFCS.
[2] John E. Beasley,et al. A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.
[3] Martin W. P. Savelsbergh,et al. MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..
[4] Egon Balas,et al. Discrete Programming by the Filter Method , 1967, Oper. Res..
[5] R. Bellman. Dynamic programming. , 1957, Science.
[6] Chak-Kuen Wong,et al. Approximate Algorithms for Some Generalized Knapsack Problems , 1976, Theor. Comput. Sci..
[7] Frederic Viader. Methodes de programmation dynamique et de recherche arborescente pour l'optimisation combinatoire : utilisation conjointe des deux approches et parallelisation d'algorithmes , 1998 .
[8] Fred W. Glover,et al. Generating Cuts from Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming , 1997, Comput. Optim. Appl..
[9] Arthur M. Geoffrion,et al. An Improved Implicit Enumeration Approach for Integer Programming , 1969, Oper. Res..
[10] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[11] Arnaud Fréville,et al. The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool , 1996, J. Heuristics.
[12] Paolo Toth,et al. New trends in exact algorithms for the 0-1 knapsack problem , 2000, Eur. J. Oper. Res..
[13] A. Fréville,et al. Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .
[14] Thomas L. Morin,et al. A hybrid approach to discrete mathematical programming , 2015, Math. Program..
[15] Jin-Kao Hao,et al. A Hybrid Approach for the 01 Multidimensional Knapsack problem , 2001, IJCAI.
[16] A. Victor Cabot,et al. An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..
[17] A. Frieze,et al. Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .
[18] Ralph E. Gomory,et al. The Theory and Computation of Knapsack Functions , 1966, Oper. Res..
[19] Martin W. P. Savelsbergh,et al. Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..
[20] Wei Shih,et al. A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .
[21] Peter L. Hammer,et al. Constraint Pairing In Integer Programming , 1975 .
[22] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[23] A. L. Soyster,et al. Zero-one programming with many variables and few constraints , 1978 .
[24] Ellis L. Johnson,et al. Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..
[25] Fred Glover,et al. Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .
[26] Monique Guignard-Spielberg,et al. Logical Reduction Methods in Zero-One Programming - Minimal Preferred Variables , 1981, Oper. Res..
[27] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[28] J. H. Ahrens,et al. Merging and Sorting Applied to the Zero-One Knapsack Problem , 1975, Oper. Res..
[29] Paolo Toth,et al. Dynamic programming algorithms for the Zero-One Knapsack Problem , 1980, Computing.
[30] David Pisinger,et al. A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..
[31] Rainer Schrader,et al. ON THE EXISTENCE OF FAST APPROXIMATION SCHEMES , 1981 .
[32] Ellis Horowitz,et al. Computing Partitions with Applications to the Knapsack Problem , 1974, JACM.
[33] T. Ibaraki. Enumerative approaches to combinatorial optimization - part I , 1988 .
[34] E. Balas. An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .
[35] F. Glover. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .
[36] Hasan Pirkul,et al. Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..
[37] A. S. Manne,et al. On the Solution of Discrete Programming Problems , 1956 .
[38] Arnaud Fréville,et al. An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..
[39] Saïd Hanafi,et al. An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..
[40] Fred W. Glover,et al. Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..
[41] S. Senju,et al. An Approach to Linear Programming with 0--1 Variables , 1968 .