A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem

Abstract This paper presents a preprocessing procedure for the 0–1 multidimensional knapsack problem. First, a non-increasing sequence of upper bounds is generated by solving LP-relaxations. Then, a non-decreasing sequence of lower bounds is built using dynamic programming. The comparison of the two sequences allows either to prove that the best feasible solution obtained is optimal, or to fix a subset of variables to their optimal values. In addition, a heuristic solution is obtained. Computational experiments with a set of large-scale instances show the efficiency of our reduction scheme. Particularly, it is shown that our approach allows to reduce the CPU time of a leading commercial software.

[1]  Eugene Levner,et al.  Computational Complexity of Approximation Algorithms for Combinatorial Problems , 1979, MFCS.

[2]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[3]  Martin W. P. Savelsbergh,et al.  MINTO, a mixed INTeger optimizer , 1994, Oper. Res. Lett..

[4]  Egon Balas,et al.  Discrete Programming by the Filter Method , 1967, Oper. Res..

[5]  R. Bellman Dynamic programming. , 1957, Science.

[6]  Chak-Kuen Wong,et al.  Approximate Algorithms for Some Generalized Knapsack Problems , 1976, Theor. Comput. Sci..

[7]  Frederic Viader Methodes de programmation dynamique et de recherche arborescente pour l'optimisation combinatoire : utilisation conjointe des deux approches et parallelisation d'algorithmes , 1998 .

[8]  Fred W. Glover,et al.  Generating Cuts from Surrogate Constraint Analysis for Zero-One and Multiple Choice Programming , 1997, Comput. Optim. Appl..

[9]  Arthur M. Geoffrion,et al.  An Improved Implicit Enumeration Approach for Integer Programming , 1969, Oper. Res..

[10]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[11]  Arnaud Fréville,et al.  The 0-1 bidimensional knapsack problem: Toward an efficient high-level primitive tool , 1996, J. Heuristics.

[12]  Paolo Toth,et al.  New trends in exact algorithms for the 0-1 knapsack problem , 2000, Eur. J. Oper. Res..

[13]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[14]  Thomas L. Morin,et al.  A hybrid approach to discrete mathematical programming , 2015, Math. Program..

[15]  Jin-Kao Hao,et al.  A Hybrid Approach for the 01 Multidimensional Knapsack problem , 2001, IJCAI.

[16]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[17]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[18]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..

[19]  Martin W. P. Savelsbergh,et al.  Preprocessing and Probing Techniques for Mixed Integer Programming Problems , 1994, INFORMS J. Comput..

[20]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[21]  Peter L. Hammer,et al.  Constraint Pairing In Integer Programming , 1975 .

[22]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[23]  A. L. Soyster,et al.  Zero-one programming with many variables and few constraints , 1978 .

[24]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[25]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[26]  Monique Guignard-Spielberg,et al.  Logical Reduction Methods in Zero-One Programming - Minimal Preferred Variables , 1981, Oper. Res..

[27]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[28]  J. H. Ahrens,et al.  Merging and Sorting Applied to the Zero-One Knapsack Problem , 1975, Oper. Res..

[29]  Paolo Toth,et al.  Dynamic programming algorithms for the Zero-One Knapsack Problem , 1980, Computing.

[30]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[31]  Rainer Schrader,et al.  ON THE EXISTENCE OF FAST APPROXIMATION SCHEMES , 1981 .

[32]  Ellis Horowitz,et al.  Computing Partitions with Applications to the Knapsack Problem , 1974, JACM.

[33]  T. Ibaraki Enumerative approaches to combinatorial optimization - part I , 1988 .

[34]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[35]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[36]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[37]  A. S. Manne,et al.  On the Solution of Discrete Programming Problems , 1956 .

[38]  Arnaud Fréville,et al.  An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..

[39]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[40]  Fred W. Glover,et al.  Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..

[41]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .