Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts.

In a continued effort to improve the suitability of ionic liquids in applications operating at raised temperatures, novel spirocyclic 'azoniaspiro' salts (with cations derived from five-, six-, seven- and eight-membered rings) are prepared and characterised. The structural and thermal properties of these salts are compared against those of established analogues. The stable geometries and ion pairing behaviour of these species are investigated via a combined experimental/computational approach, employing X-ray crystallography and Density Functional Theory (DFT) methods. Subsequently, the thermal stabilities of these organic salts are characterised and compared using a broad range of techniques. Hyphenated Thermogravimetry-Mass Spectrometry investigations enable complex mechanisms underlying thermal decomposition to be elucidated. Lastly, transition state structures are optimised, corresponding to plausible decomposition mechanisms of the azoniaspiro salt, 6-azoniaspiro[6.5]dodecanium chloride, and one prototypical monocyclic species 1-butyl-1-methylpiperidinium chloride, using DFT. The observed improved thermal stabilities of the azoniaspiro salts, and their potential higher-temperature stable-liquid ranges, render them promising candidates for future ionic liquid applications.

[1]  T. Welton,et al.  Hydrogen bonding and π-π interactions in imidazolium-chloride ionic liquid clusters. , 2015, Physical chemistry chemical physics : PCCP.

[2]  Matthew T Clough Ionic liquid thermal stability: implications for cellulose regeneration , 2015 .

[3]  T. Welton,et al.  A physicochemical investigation of ionic liquid mixtures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02931c Click here for additional data file. , 2014, Chemical science.

[4]  Richard P Matthews,et al.  The impact of anion electronic structure: similarities and differences in imidazolium based ionic liquids , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  R. Palgrave,et al.  Preparation and characterisation of high-density ionic liquids incorporating halobismuthate anions. , 2014, Dalton transactions.

[6]  Tiancheng Mu,et al.  Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis , 2014 .

[7]  T. Welton,et al.  Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[8]  T. Welton,et al.  Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. , 2013, Physical chemistry chemical physics : PCCP.

[9]  C. Stevens,et al.  Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. , 2013, Chemical Society reviews.

[10]  Patricia A. Hunt,et al.  Mixtures of ionic liquids. , 2012, Chemical Society reviews.

[11]  B. Kirchner,et al.  On the ideality of binary mixtures of ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[12]  Alistair W. T. King,et al.  Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications , 2012 .

[13]  Ghanshyam L. Vaghjiani,et al.  Thermal decomposition mechanism of 1-ethyl-3-methylimidazolium bromide ionic liquid. , 2012, The journal of physical chemistry. A.

[14]  Zhimin Xue,et al.  Quantitative Research on the Vaporization and Decomposition of [EMIM][Tf2N] by Thermogravimetric Analysis–Mass Spectrometry , 2012 .

[15]  P. Mäki-Arvela,et al.  Switchable Ionic liquids (SILs) based on glycerol and acid gases , 2011 .

[16]  J. Hallett,et al.  Salts dissolved in salts: ionic liquid mixtures , 2011 .

[17]  G. Srinivasan,et al.  Azepanium ionic liquids , 2011 .

[18]  R. Rinaldi,et al.  Thermal stability of ionic liquids assessed by potentiometric titration , 2010 .

[19]  A. Jess,et al.  An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. , 2010, Physical chemistry chemical physics : PCCP.

[20]  A. Jess,et al.  Prediction of long-term stability of ionic liquids at elevated temperatures by means of non-isothermal thermogravimetrical analysis. , 2009, Physical chemistry chemical physics : PCCP.

[21]  Y. Abu-Lebdeh,et al.  Spiro-ammonium Imide Salts as Electrolytes for Lithium Batteries , 2009 .

[22]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[23]  H. Ohtani,et al.  Thermal Decomposition Behaviors of Imidazolium-type Ionic Liquids Studied by Pyrolysis-Gas Chromatography , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[24]  C. Peters,et al.  Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids , 2007 .

[25]  S. Zones,et al.  A study of piperidinium structure-directing agents in the synthesis of silica molecular sieves under fluoride-based conditions. , 2007, Journal of the American Chemical Society.

[26]  P. Hunt,et al.  Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? , 2007, The journal of physical chemistry. B.

[27]  I. Gould,et al.  The Structure of Imidazolium-Based Ionic Liquids: Insights From Ion-Pair Interactions , 2007 .

[28]  Barbara Kirchner,et al.  Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. , 2006, Chemistry.

[29]  D. Macfarlane,et al.  Thermal degradation of cyano containing ionic liquids , 2006 .

[30]  I. Gould,et al.  Structural characterization of the 1-butyl-3-methylimidazolium chloride ion pair using ab initio methods. , 2006, The journal of physical chemistry. A.

[31]  K. R. Seddon,et al.  Deviations from ideality in mixtures of two ionic liquids containing a common ion. , 2005, The journal of physical chemistry. B.

[32]  Joan F. Brennecke,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids , 2004 .

[33]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[34]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[35]  F. Frigerio,et al.  Dynamic behaviour of azonia-spiro-alkanes within the MOR and MTW zeolite pore structures , 2001 .

[36]  H. Ngo,et al.  Thermal properties of imidazolium ionic liquids , 2000 .

[37]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[38]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[39]  F. Jensen Introduction to Computational Chemistry , 1998 .

[40]  F. Frigerio,et al.  Zeolite synthesis in the presence of azonia-spiro compounds as structure-directing agents , 1998 .

[41]  T. Welton,et al.  A fast atom bombardment mass spectrometric study of room-temperature 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquids. Evidence for the existence of the decachlorotrialuminate(III) anion , 1993 .

[42]  T. Welton,et al.  Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AICI4)3]−, in acidic ambient-temperature ionic liquids , 1992 .

[43]  V. N. Krishnamurthy,et al.  Thermal decomposition and pyrolysis-GC studies on tetraalkyl-substituted ammonium hexafluorophosphates , 1991 .

[44]  T. Welton,et al.  Upon the existence of [Al3Cl10]− in room temperature chloroaluminate ionic liquids , 1989 .

[45]  C. Hussey,et al.  Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis , 1982 .

[46]  C. Jolicoeur,et al.  Aqueous solutions of azoniaspiroalkane halides. VI. Apparent molal volumes and apparent molal heat capacities of chlorides and iodides , 1979 .

[47]  M. Grimmett,et al.  The synthesis and thermolysis of imidazole quaternary salts , 1977 .

[48]  Helena L. Chum,et al.  Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt , 1975 .

[49]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[50]  F. H. Hurley,et al.  The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature , 1951 .

[51]  W. Marsden I and J , 2012 .

[52]  Michael J. Zaworotko,et al.  Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids , 1992 .

[53]  W. Eschweiler Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd , 1905 .