Computer Algebra and Symbolic Computation: Elementary Algorithms

This book provides a systematic approach for the algorithmic formulation and implementation of mathematical operations in computer algebra programming languages. The viewpoint is that mathematical expressions, represented by expression trees, are the data objects of computer algebra programs, and by using a few primitive operations that analyze and construct expressions, we can implement many elementary operations from algebra, trigonometry, calculus, and differential equations. With a minimum of prerequisites this book is accessible to and useful for students of mathematics, computer science, and other technical fields. The book contains a CD with the full, searchable text and implementations of all algorithms in the Maple, Mathematica, and MuPad programming languages.

[1]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[2]  A. Besicovitch,et al.  On the Linear Independence of Fractional Powers of Integers , 1940 .

[3]  W. Wulf,et al.  Fundamental Structures of Computer Science , 1980 .

[4]  S. Zilles,et al.  FORMAC an experimental formula manipulation Compiler , 1964, ACM National Conference.

[5]  G. E. Collins Computer Algebra of Polynomials and Rational Functions , 1973 .

[6]  Joel Moses,et al.  Symbolic integration: the stormy decade , 1966, CACM.

[7]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[8]  K. B. Oldham,et al.  An Atlas of Functions. , 1988 .

[9]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[10]  Paul S. Wang,et al.  New Algorithms for Polynomial Square-Free Decomposition Over the Integers , 1979, SIAM J. Comput..

[11]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[12]  Jean-Paul Marchand,et al.  Geometry of equilibrium configurations in the Ising model , 1983 .

[13]  Israel Kleiner Field Theory: From Equations to Axiomatization , 1999 .

[14]  G. Latta,et al.  Ordinary differential equations and their solutions , 1960 .

[15]  Susan Landau Simplification of Nested Radicals , 1992, SIAM J. Comput..

[16]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[17]  Laurent Bernardin,et al.  A review of symbolic solvers , 1996, SIGS.

[18]  Stephen Wolfram,et al.  The Mathematica book (4th edition) , 1999 .

[19]  Robert G. Tobey Symbolic mathematical computation—introduction and overview , 1971, SYMSAC '71.

[20]  Louis I. Gordon,et al.  Elements of complex variables , 1965 .

[21]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[22]  Philip J. Davis,et al.  The Mathematical Experience , 1982 .

[23]  W. S. Brown The Subresultant PRS Algorithm , 1978, TOMS.

[24]  André Heck,et al.  Introduction to Maple , 1993 .

[25]  F. Dorey,et al.  Prime and composite polynomials , 1974 .

[26]  Trevor J. Smedley Fast methods for computation with algebraic numbers , 1990 .

[27]  Frederick W. Stevenson Exploring the Real Numbers , 1999 .

[28]  Anthony Ralston,et al.  Discrete algorithmic mathematics , 1990 .

[29]  P. Sconzo,et al.  Symbolic computation of F and G series by computer , 1965 .

[30]  Marcelo Polezzi A geometrical method for finding an explicit formula for the greatest common divisor , 1997 .

[31]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[32]  Morris Kline Mathematics and the Search for Knowledge , 1985 .

[33]  M. Mignotte,et al.  Polynomials: An Algorithmic Approach , 1999 .

[34]  Richard J. Fateman,et al.  Symbolic Mathematics System Evaluators , 2002 .

[35]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[36]  Keith O. Geddes,et al.  Maple 6 Programming Guide , 2000 .

[37]  C. Pinter A book of abstract algebra , 1982 .

[38]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[39]  George E. Collins,et al.  The Calculation of Multivariate Polynomial Resultants , 1971, JACM.

[40]  Paul Zimmermann,et al.  Solving Ordinary Differential Equations , 1998 .

[41]  Garrett Birkhoff,et al.  A survey of modern algebra , 1942 .

[42]  Ho Peng Yoke,et al.  Chinese Mathematics in the Thirteenth Century. , 1973 .

[43]  Stanley I. Grossman,et al.  Elementary Differential Equations , 1997 .

[44]  F. S. Nowlan Objectives in the Teaching of College Mathematics , 1950 .

[45]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[46]  James F. Epperson,et al.  An Introduction to Numerical Methods and Analysis , 2001 .

[47]  Richard D. Jenks,et al.  AXIOM: the scientific computation system , 1992 .

[48]  Clark Weissman,et al.  LISP 1.5 primer , 1967 .

[49]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[50]  G. F. Simmons Differential Equations With Applications and Historical Notes , 1972 .

[51]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[52]  Richard Zippel,et al.  Polynomial Decomposition Algorithms , 1985, J. Symb. Comput..

[53]  Gail S. K. Wolkowicz,et al.  Differential Equations with Applications to Biology , 1998 .

[54]  Joel S. Cohen,et al.  Computer Algebra and Symbolic Computation: Mathematical Methods , 2003 .

[55]  Gerhard Rayna,et al.  Reduce - software for algebraic computation , 1987, Symbolic computation: artificial intelligence.

[56]  Lee A. Segel,et al.  Mathematics applied to deterministic problems in the natural sciences , 1974, Classics in applied mathematics.

[57]  I. Herstein,et al.  Topics in algebra , 1964 .

[58]  J. D. Lipson Elements of algebra and algebraic computing , 1981 .

[59]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[60]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[61]  M. Wester Computer algebra systems: a practical guide , 1999 .

[62]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[63]  David Y. Y. Yun,et al.  On square-free decomposition algorithms , 1976, SYMSAC '76.

[64]  J. C. Farrar,et al.  Computer approaches to mathematical problems , 1975 .

[65]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[66]  Paul J. Nahin,et al.  An Imaginary Tale: The Story of √-1. , 1999 .

[67]  Manuel Bronstein,et al.  Symbolic integration I: transcendental functions , 1997 .

[68]  Mark Weiss Data Structures and Problem Solving Using C , 1999 .

[69]  S. Griffis EDITOR , 1997, Journal of Navigation.

[70]  R. G. Tobey,et al.  Automatic simplification in FORMAC , 1965, AFIPS '65 (Fall, part I).

[71]  Ernest William Hobson A Treatise on Plane and Advanced Trigonometry , 2004 .

[72]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[73]  Tomás Recio,et al.  Advances on the Simplification of Sine-Cosine Equations , 1998, J. Symb. Comput..

[74]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[75]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[76]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[77]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[78]  D. Musser Algorithms for polynomial factorization. , 1971 .