Analysis and prediction of hematocrit in microvascular networks

[1]  T. Ye,et al.  Temporal-spatial heterogeneity of hematocrit in microvascular networks , 2023, Physics of Fluids.

[2]  G. Karniadakis,et al.  Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19 , 2022, Biophysical Journal.

[3]  Ziyan Wan,et al.  The prognostic value of circulating tumour cells (CTCs) and CTC white blood cell clusters in patients with renal cell carcinoma , 2021, BMC Cancer.

[4]  N. Németh,et al.  Examination of the relation between red blood cell aggregation and hematocrit in human and various experimental animals. , 2021, Clinical hemorheology and microcirculation.

[5]  Cheng Zhang,et al.  Circulating Tumor-Cell-Associated White Blood Cell Clusters in Peripheral Blood Indicate Poor Prognosis in Patients With Hepatocellular Carcinoma , 2020, Frontiers in Oncology.

[6]  T. Ye,et al.  Biomechanics in thrombus formation from direct cellular simulations. , 2020, Physical review. E.

[7]  Gábor Závodszky,et al.  The influence of red blood cell deformability on hematocrit profiles and platelet margination , 2020, PLoS Comput. Biol..

[8]  Xuejin Li,et al.  Parallel modeling of cell suspension flow in complex micro-networks with inflow/outflow boundary conditions , 2020, J. Comput. Phys..

[9]  Linda T. Nieman,et al.  Microfluidic concentration and separation of circulating tumor cell clusters from large blood volumes. , 2020, Lab on a Chip.

[10]  T. Ye,et al.  The key events of thrombus formation: platelet adhesion and aggregation , 2019, Biomechanics and Modeling in Mechanobiology.

[11]  E Weinan,et al.  DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models , 2019, Comput. Phys. Commun..

[12]  T. Ye,et al.  Red blood cell distribution in a microvascular network with successive bifurcations , 2019, Biomechanics and Modeling in Mechanobiology.

[13]  P. Maini,et al.  Abnormal morphology biases hematocrit distribution in tumor vasculature and contributes to heterogeneity in tissue oxygenation , 2019, Proceedings of the National Academy of Sciences.

[14]  P. Bagchi,et al.  The cell-free layer in simulated microvascular networks , 2019, Journal of Fluid Mechanics.

[15]  Giustina Casagrande,et al.  A computational model for microcirculation including Fahraeus‐Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium , 2018, International journal for numerical methods in biomedical engineering.

[16]  T. Ye,et al.  Flow patterns and red blood cell dynamics in a U-bend , 2018, Journal of Applied Physics.

[17]  Prosenjit Bagchi,et al.  Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks , 2018 .

[18]  Sergey S Shevkoplyas,et al.  Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhræus effect) in an artificial microvascular network , 2017, Microcirculation.

[19]  A. Wolberg,et al.  Red blood cells in thrombosis. , 2017, Blood.

[20]  Chwee Teck Lim,et al.  Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows. , 2017, Physical review. E.

[21]  Ana I. Pereira,et al.  Cell-free layer measurements of in vitro blood flow in a microfluidic network: an automatic and manual approach , 2017, Comput. methods Biomech. Biomed. Eng. Imaging Vis..

[22]  Jiho Yang,et al.  Effect of fractional blood flow on plasma skimming in the microvasculature. , 2017, Physical review. E.

[23]  Timothy W. Secomb,et al.  Blood Flow in the Microcirculation , 2017 .

[24]  T. Ishikawa,et al.  Cell adhesion during bullet motion in capillaries. , 2016, American journal of physiology. Heart and circulatory physiology.

[25]  Gerhard Gompper,et al.  Modeling microcirculatory blood flow: current state and future perspectives , 2016, Wiley interdisciplinary reviews. Systems biology and medicine.

[26]  Jens Harting,et al.  Inversion of hematocrit partition at microfluidic bifurcations. , 2016, Microvascular research.

[27]  Rachid Chebbi,et al.  Dynamics of blood flow: modeling of the Fåhræus–Lindqvist effect , 2015, Journal of Biological Physics.

[28]  Chwee Teck Lim,et al.  A file of red blood cells in tube flow: A three-dimensional numerical study , 2014 .

[29]  Sridhar Ramaswamy,et al.  Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis , 2014, Cell.

[30]  D. Holmes,et al.  Spatial Distributions of Red Blood Cells Significantly Alter Local Haemodynamics , 2014, PloS one.

[31]  Stavroula Balabani,et al.  Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel , 2014, Biomechanics and modeling in mechanobiology.

[32]  Jonathan B. Freund,et al.  Numerical Simulation of Flowing Blood Cells , 2014 .

[33]  Junfeng Zhang,et al.  Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. , 2013, Microvascular research.

[34]  G. Karniadakis,et al.  Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study , 2012, Physical biology.

[35]  Wenjuan Xiong,et al.  Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects , 2011, Biomechanics and Modeling in Mechanobiology.

[36]  J. Restrepo,et al.  Simulated Red Blood Cell Motion in Microvessel Bifurcations: Effects of Cell–Cell Interactions on Cell Partitioning , 2011, Cardiovascular engineering and technology.

[37]  V. Doyeux,et al.  Spheres in the vicinity of a bifurcation: elucidating the Zweifach–Fung effect , 2010, Journal of Fluid Mechanics.

[38]  G. Karniadakis,et al.  Blood Flow and Cell‐Free Layer in Microvessels , 2010, Microcirculation.

[39]  Sangho Kim,et al.  Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles. , 2010, American journal of physiology. Heart and circulatory physiology.

[40]  G. Karniadakis,et al.  Systematic coarse-graining of spectrin-level red blood cell models. , 2010, Computer Methods in Applied Mechanics and Engineering.

[41]  A. Popel,et al.  Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. , 2009, Microvascular research.

[42]  R. Glowinski,et al.  Numerical simulation of rheology of red blood cell rouleaux in microchannels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  George Em Karniadakis,et al.  Accurate coarse-grained modeling of red blood cells. , 2008, Physical review letters.

[44]  K R Rajagopal,et al.  A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. , 2008, Journal of theoretical biology.

[45]  Juan M. Restrepo,et al.  Simulated Two-dimensional Red Blood Cell Motion, Deformation, and Partitioning in Microvessel Bifurcations , 2008, Annals of Biomedical Engineering.

[46]  Dominique Barthès-Biesel,et al.  Motion of a capsule in a cylindrical tube: effect of membrane pre-stress , 2007, Journal of Fluid Mechanics.

[47]  Aleksander S Popel,et al.  Temporal and spatial variations of cell-free layer width in arterioles. , 2007, American journal of physiology. Heart and circulatory physiology.

[48]  Yaling Liu,et al.  Rheology of red blood cell aggregation by computer simulation , 2006, J. Comput. Phys..

[49]  J. Freund Leukocyte Margination in a Model Microvessel , 2006 .

[50]  Frédéric Risso,et al.  Experimental investigation of a bioartificial capsule flowing in a narrow tube , 2006, Journal of Fluid Mechanics.

[51]  A. Pries,et al.  Microvascular blood viscosity in vivo and the endothelial surface layer. , 2005, American journal of physiology. Heart and circulatory physiology.

[52]  Aleksander S Popel,et al.  Microcirculation and Hemorheology. , 2005, Annual review of fluid mechanics.

[53]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[54]  D M Eckmann,et al.  Hematocrit, Volume Expander, Temperature, and Shear Rate Effects on Blood Viscosity , 2000, Anesthesia and analgesia.

[55]  A. Collins,et al.  Hematocrit level and associated mortality in hemodialysis patients. , 1999, Journal of the American Society of Nephrology : JASN.

[56]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[57]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[58]  A. Pries,et al.  Resistance to blood flow in microvessels in vivo. , 1994, Circulation research.

[59]  J C Barbenel,et al.  Influence of hematocrit on erythrocyte aggregation kinetics for suspensions of red blood cells in autologous plasma. , 1994, Biorheology.

[60]  A. Pries,et al.  Blood viscosity in tube flow: dependence on diameter and hematocrit. , 1992, The American journal of physiology.

[61]  H. Niimi,et al.  Cell-free plasma layer in cerebral microvessels. , 1992, Biorheology.

[62]  A. Pries,et al.  Blood flow in microvascular networks. Experiments and simulation. , 1990, Circulation research.

[63]  A. Pries,et al.  Red cell distribution at microvascular bifurcations. , 1989, Microvascular research.

[64]  G. Schmid-Schönbein,et al.  Model studies on distributions of blood cells at microvascular bifurcations. , 1985, The American journal of physiology.

[65]  S Chien,et al.  In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat. , 1980, Microvascular research.

[66]  Robin Fåhræus,et al.  THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES , 1931 .

[67]  R. Fåhraeus THE SUSPENSION STABILITY OF THE BLOOD , 1929 .

[68]  Toru Hyakutake,et al.  Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. , 2015, Microvascular research.

[69]  Moubin Liu,et al.  On the treatment of solid boundary in smoothed particle hydrodynamics , 2012 .

[70]  Paul C. Johnson,et al.  The cell-free layer in microvascular blood flow. , 2009, Biorheology.

[71]  B. W. Roberts,et al.  The distribution of freely suspended particles at microfluidic bifurcations , 2006 .

[72]  M. Anand,et al.  A SHEAR-THINNING VISCOELASTIC FLUID MODEL FOR DESCRIBING THE FLOW OF BLOOD , 2004 .

[73]  Kumbakonam R. Rajagopal,et al.  A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood , 2003 .

[74]  R. Skalak,et al.  Cell distribution in capillary networks. , 1980, Microvascular research.

[75]  Y. Fung Stochastic flow in capillary blood vessels. , 1973, Microvascular research.