Bacterial lipases.

Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, meaning a sharp increase in lipase activity observed when the substrate starts to form an emulsion, thereby presenting to the enzyme an interfacial area. As a consequence, the kinetics of a lipase reaction do not follow the classical Michaelis-Menten model. With only a few exceptions, bacterial lipases are able to completely hydrolyze a triacylglycerol substrate although a certain preference for primary ester bonds has been observed. Numerous lipase assay methods are available using coloured or fluorescent substrates which allow spectroscopic and fluorimetric detection of lipase activity. Another important assay is based on titration of fatty acids released from the substrate. Newly developed methods allow to exactly determine lipase activity via controlled surface pressure or by means of a computer-controlled oil drop tensiometer. The synthesis and secretion of lipases by bacteria is influenced by a variety of environmental factors like ions, carbon sources, or presence of non-metabolizable polysaccharides. The secretion pathway is known for Pseudomonas lipases with P. aeruginosa lipase using a two-step mechanism and P. fluorescens lipase using a one-step mechanism. Additionally, some Pseudomonas lipases need specific chaperone-like proteins assisting their correct folding in the periplasm. These lipase-specific foldases (Lif-proteins) which show a high degree of amino acid sequence homology among different Pseudomonas species are coded for by genes located immediately downstream the lipase structural genes. A comparison of different bacterial lipases on the basis of primary structure revealed only very limited sequence homology. However, determination of the three-dimensional structure of the P. glumae lipase indicated that at least some of the bacterial lipases will presumably reveal a conserved folding pattern called the alpha/beta-hydrolase fold, which has been described for other microbial and human lipases. The catalytic site of lipases is buried inside the protein and contains a serine-protease-like catalytic triad consisting of the amino acids serine, histidine, and aspartate (or glutamate). The Ser-residue is located in a strictly conserved beta-epsilon Ser-alpha motif. The active site is covered by a lid-like alpha-helical structure which moves away upon contact of the lipase with its substrate, thereby exposing hydrophobic residues at the protein's surface mediating the contact between protein and substrate.(ABSTRACT TRUNCATED AT 400 WORDS)

[1]  R. Mckellar A rapid colorimetric assay for the extracellular lipase of Pseudomonas fluorescens B52 using β-naphthyl caprylate , 1986, Journal of Dairy Research.

[2]  G. Feller,et al.  Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. , 1993, Biochimica et biophysica acta.

[3]  G. Schulte,et al.  Glycogen and various other polysaccharides stimulate the formation of exolipase by Pseudomonas aeruginosa. , 1982, Canadian journal of microbiology.

[4]  J. Coddington,et al.  An NMR assay for quantitating lipase activity in biphasic macroemulsions , 1992 .

[5]  P. Fitzpatrick,et al.  Chemoenzymic synthesis of optically active (meth)acrylic polymers , 1991 .

[6]  S. Larson,et al.  Preliminary investigation of crystals of the neutral lipase from Pseudomonas fluorescens. , 1991, Journal of molecular biology.

[7]  P. Nilsson-ehle,et al.  Purification and characterization of a lipase from Staphylococcus aureus. , 1987, Biochimica et biophysica acta.

[8]  N. Fujiwara,et al.  Purification and Some Properties of a Castor-oil-hydrolyzing Lipase from Pseudomonas sp. , 1988 .

[9]  K. T. Holland,et al.  Interaction of Propionibacterium acnes with skin lipids in vitro. , 1993, Journal of general microbiology.

[10]  J. Harwood The versatility of lipases for industrial uses. , 1989, Trends in biochemical sciences.

[11]  P. Luisi,et al.  A Continuous Assay for Lipases in Reverse Micelles Based on Fourier Transform Infrared Spectroscopy , 1989 .

[12]  B. Dowds,et al.  Phase variation in Xenorhabdus luminescens: cloning and sequencing of the lipase gene and analysis of its expression in primary and secondary phases of the bacterium , 1993, Journal of bacteriology.

[13]  F. Götz,et al.  Degradation of lipids by bacterial lipases. , 1992 .

[14]  G. Döring Chronic Pseudomonas aeruginosa Lung Infection in Cystic Fibrosis Patients , 1993 .

[15]  A. Rawyler,et al.  A single and continuous spectrophotometric assay for various lipolytic enzymes, using natural, non-labelled lipid substrates. , 1989, Biochimica et biophysica acta.

[16]  E. Garman,et al.  Crystallization and preliminary X-ray study of a lipase from Pseudomonas glumae. , 1992, Journal of molecular biology.

[17]  S. A. Hedström,et al.  A new serological assay for Staphylococcus aureus infections: detection of IgG antibodies to S. aureus lipase with an enzyme-linked immunosorbent assay. , 1985, The Journal of infectious diseases.

[18]  D. Ollis,et al.  X-ray crystallographic structure of dienelactone hydrolase at 2.8 A. , 1988, Journal of molecular biology.

[19]  M. Smeltzer,et al.  The extracellular protein regulator (xpr) affects exoprotein and agr mRNA levels in Staphylococcus aureus , 1993, Journal of bacteriology.

[20]  J. Tommassen,et al.  Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae , 1993, Molecular microbiology.

[21]  G. Berti,et al.  Kinetic colorimetric assay of lipase in serum. , 1992, Clinical chemistry.

[22]  F. Winkler,et al.  Structure of human pancreatic lipase , 1990, Nature.

[23]  M. Berger,et al.  Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-monoacylglycerols , 1992 .

[24]  R. Linhardt,et al.  Biocatalytic synthesis of sugar-containing polyacrylate-based hydrogels , 1992 .

[25]  K. Jaeger,et al.  Lipase from Chromobacterium viscosum: biochemical characterization indicating homology to the lipase from Pseudomonas glumae. , 1995, Biochimica et biophysica acta.

[26]  G. Feller,et al.  Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. , 1991, DNA and cell biology.

[27]  S. Remington,et al.  Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase. , 1991, The Journal of biological chemistry.

[28]  S. Hinton,et al.  Cloning and nucleotide sequence of the chlD locus , 1987, Journal of bacteriology.

[29]  C. Cambillau,et al.  Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent , 1992, Nature.

[30]  T. Nihira,et al.  Requirement in trans of the downstream limL gene for activation of lactonizing lipase from Pseudomonas sp. 109 , 1992 .

[31]  S. Gill,et al.  Localization of a chromosomal mutation affecting expression of extracellular lipase in Staphylococcus aureus , 1992, Journal of bacteriology.

[32]  C. Jones,et al.  Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. , 1991, Journal of general microbiology.

[33]  Y. Shabtai,et al.  Production, purification, and properties of a lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments , 1992, Applied and environmental microbiology.

[34]  B. Dijkstra,et al.  Crystallization and preliminary X-ray analysis of a lipase from Bacillus subtilis. , 1994, Journal of molecular biology.

[35]  F. Götz,et al.  Biochemical properties of a novel metalloprotease from Staphylococcus hyicus subsp. hyicus involved in extracellular lipase processing , 1994, Journal of bacteriology.

[36]  K. T. Holland,et al.  Molecular analysis and expression of the lipase of Staphylococcus epidermidis. , 1993, Journal of general microbiology.

[37]  M. M. Hoq,et al.  Some Characteristics of Continuous Glyceride Synthesis by Lipase in a Microporous Hydrophobic Membrane Bioreactor , 1985 .

[38]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[39]  K. Nilsson Enzymatic synthesis of , 1988 .

[40]  W. J. Harper,et al.  Screening of commercial lipases for production of mono- and diacylglycerols from butteroil by enzymic glycerolysis , 1994 .

[41]  T. Yamane,et al.  High-yield enzymatic glycerolysis of fats and oils , 1991 .

[42]  B. Kenny,et al.  Evidence that residues −15 to −46 of the haemolysin secretion signal are involved in early steps in secretion, leading to recognition of the translocator , 1994, Molecular microbiology.

[43]  T. Yamane,et al.  Further improvements in the yield of monoglycerides during enzymatic glycerolysis of fats and oils , 1991 .

[44]  M. Arbige,et al.  Industrial enzymology: a look towards the future , 1989 .

[45]  D. McConnell,et al.  Activation of a bacterial lipase by its chaperone. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  U. Winkler,et al.  Alginate lyase releases cell-bound lipase from mucoid strains of Pseudomonas aeruginosa. , 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology.

[47]  M. Inouye,et al.  Intramolecular chaperones and protein folding. , 1993, Trends in biochemical sciences.

[48]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[49]  S. Inouye,et al.  Cloning, sequencing and expression of the lipase gene from Pseudomonas fragi IFO‐12049 in E. coli , 1988, FEBS letters.

[50]  E. Ruban [Microbial lipases]. , 1972, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia.

[51]  F. Götz,et al.  Lipase of Staphylococcus hyicus: analysis of the catalytic triad by site-directed mutagenesis. , 1992, FEMS microbiology letters.

[52]  S. Godtfredsen,et al.  The future impact of industrial lipases , 1991 .

[53]  J. W. Bos,et al.  Cloning of the Pseudomonas glumae lipase gene and determination of the active site residues , 1992, Applied and environmental microbiology.

[54]  S. Jørgensen,et al.  Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes , 1991, Journal of bacteriology.

[55]  A. Pitotti,et al.  p-nitrophenyllaurate: a substrate for the high-performance liquid chromatographic determination of lipase activity. , 1991, Journal of chromatography.

[56]  D. Wilton A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acids. , 1990, The Biochemical journal.

[57]  D. Schomburg,et al.  Crystallization and preliminary X-ray analysis of a lipase from Chromobacterium viscosum. , 1994, Acta crystallographica. Section D, Biological crystallography.

[58]  J. Wallach,et al.  Lipase assay in duodenal juice using a conductimetric method. , 1984, Clinica chimica acta; international journal of clinical chemistry.

[59]  R. Verger,et al.  Stereoselective hydrolysis of triglycerides by animal and microbial lipases. , 1993, Chirality.

[60]  A. Margolin Enzymes in the Synthesis of Chiral Drugs , 1993 .

[61]  R. Verger,et al.  Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique. , 1990, The Journal of biological chemistry.

[62]  J. Anguita,et al.  Purification, gene cloning, amino acid sequence analysis, and expression of an extracellular lipase from an Aeromonas hydrophila human isolate , 1993, Applied and environmental microbiology.

[63]  R. Verger,et al.  Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. , 1991, European journal of biochemistry.

[64]  J. Rhee,et al.  Production and partial purification of a lipase from Pseudomonas putida 3SK , 1993 .

[65]  R. Sweet,et al.  Crystallization and preliminary X-ray crystallographic analysis of lipase from Pseudomonas cepacia. , 1992, Journal of molecular biology.

[66]  S. Lory Determinants of extracellular protein secretion in gram-negative bacteria , 1992, Journal of bacteriology.

[67]  J. W. Bos,et al.  An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase , 1993, Molecular microbiology.

[68]  U. Winkler,et al.  The effect of native and modified hyaluronate upon the formation of exolipase by Pseudomonas aeruginosa , 1983 .

[69]  G. Feller,et al.  Nucleotide sequence of the lipase gene lip3 from the antarctic psychotroph Moraxella TA144. , 1991, Biochimica et biophysica acta.

[70]  C. Jones,et al.  Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. , 1991, Journal of general microbiology.

[71]  E. J. Gilbert,et al.  Pseudomonas lipases: biochemical properties and molecular cloning. , 1993, Enzyme and microbial technology.

[72]  C. Sih,et al.  Macrocyclic lactones via biocatalysis in non-aqueous media , 1988 .

[73]  L. Thim,et al.  A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex , 1991, Nature.

[74]  K. Lisowska,et al.  Cloning, nucleotide sequence and expression of rat heat inducible hsp70 gene. , 1994, Biochimica et biophysica acta.

[75]  M. Hashimoto,et al.  A novel and simple colorimetric assay for human serum lipase. , 1977, Journal of biochemistry.

[76]  M. Egmond,et al.  A monolayer and bulk study on the kinetic behavior of Pseudomonas glumae lipase using synthetic pseudoglycerides. , 1991, Biochemistry.

[77]  L. Sarda,et al.  Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions. , 1986, Gastroenterology.

[78]  K. Hirano,et al.  Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. , 1977, Biochimica et biophysica acta.

[79]  A. Kharazmi,et al.  Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro. , 1991, Microbial pathogenesis.

[80]  M. Mergeay,et al.  Lipases from psychrotropic antarctic bacteria , 1990 .

[81]  U. Winkler,et al.  Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens , 1979, Journal of bacteriology.

[82]  H. Tilbeurgh,et al.  Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography , 1993, Nature.

[83]  G. S. Hassing Partial purification and some properties of a lipase from Corynebacterium acnes. , 1971, Biochimica et Biophysica Acta.

[84]  A. Klibanov,et al.  Lipase-catalyzed acyiation of sugars solubilized in hydrophobic solvents by complexation. , 1993, Biotechnology and bioengineering.

[85]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[86]  W. J. Harper,et al.  Control of lipase-mediated glycerolysis reactions with butter oil in single liquid phase media with 2-methyl-2-propanol , 1993 .

[87]  U. Winkler,et al.  Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. , 1992, Journal of General Microbiology.

[88]  M. Aires-Barros,et al.  Purification of lipases. , 1992, Journal of biotechnology.

[89]  Yasuhiro Yamada,et al.  Lipase catalyzed synthesis of macrocyclic lactones in organic solvents , 1987 .

[90]  A. Goldman,et al.  Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein , 1991, Science.

[91]  K. Schleifer,et al.  Nucleic Acids Research Complete nucleotide sequence of the Upase gene from Staphylococcus hyicus cloned in Staphylococcus carnosus , 2005 .

[92]  J. Iandolo,et al.  Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene , 1986, Journal of bacteriology.

[93]  C. Soscia,et al.  The Pseudomonas fluorescens lipase has a C‐terminal secretion signal and is secreted by a three‐component bacterial ABC‐exporter system , 1994, Molecular microbiology.

[94]  F. A. García,et al.  An ultrafiltration membrane bioreactor for the lipolysis of olive oil in reversed micellar media , 1993, Biotechnology and bioengineering.

[95]  M. Basri,et al.  A plate assay for primary screening of lipase activity , 1989 .

[96]  R. Verger Enzyme kinetics of lipolysis. , 1980, Methods in enzymology.

[97]  T. Funada,et al.  Hydrolysis of beef tallow by lipase from Pseudomonas sp. , 1988, Biotechnology and bioengineering.

[98]  J. Oda,et al.  Purification, molecular cloning, and expression of lipase from Pseudomonas aeruginosa. , 1992, Archives of biochemistry and biophysics.

[99]  S. Normark,et al.  In vivo processing of Staphylococcus aureus lipase , 1992, Journal of bacteriology.

[100]  J. Graille,et al.  Spectrophotometry assay of lipase activity using Rhodamine 6G , 1991 .

[101]  Y. Shimada,et al.  Cloning, nucleotide sequencing, and expression in Escherichia coli of a lipase and its activator genes from Pseudomonas sp. KWI-56. , 1991, Agricultural and biological chemistry.

[102]  H. Huser,et al.  Purification and characterization of Staphylococcus aureus lipase , 1981 .

[103]  K. Juárez,et al.  Cloning, characterization, and expression in Streptomyces lividans 66 of an extracellular lipase-encoding gene from Streptomyces sp. M11. , 1993, Gene.

[104]  B Nieuwenhuis BRIDGE. Biotechnology Research for Innovation, Development and Growth in Europe (1990-1993). Catalogue of contracts with project descriptions. EUR 14278 , 1992 .

[105]  M. Merrick,et al.  In a class of its own — the RNA polymerase sigma factor σ;54 (σN) , 1993 .

[106]  F. Götz,et al.  Inactivation of Staphylococcus hyicus lipase by hexadecylsulfonyl fluoride: evidence for an active site serine. , 1994, Protein engineering.

[107]  F. Götz,et al.  Purification and substrate specificity of Staphylococcus hyicus lipase. , 1989, Biochemistry.

[108]  R. Verger,et al.  Monolayer techniques for studying phospholipase kinetics. , 1991, Methods in enzymology.

[109]  M. Isobe,et al.  Studies on the lipase of Chromobacterium viscosum. IV. Substrate specificity of a low molecular weight lipase. , 1975, Chemical & pharmaceutical bulletin.

[110]  B. Borgström,et al.  Tributyrine as a substrate for determination of lipase activity of pancreatic juice and small intestinal content. , 1970, Scandinavian journal of gastroenterology.

[111]  K. Jaeger,et al.  Specific and sensitive plate assay for bacterial lipases , 1987, Applied and environmental microbiology.

[112]  M. Simonen,et al.  Protein secretion in Bacillus species , 1993, Microbiological reviews.

[113]  A. M. Mckay Microbial carboxylic ester hydrolases (EC 3.1.1) in food biotechnology , 1993 .

[114]  J. A. Alford,et al.  Activity of microbial lipases on natural fats and synthetic triglycerides. , 1964, Journal of lipid research.

[115]  C T Verrips,et al.  Pseudomonas glumae lipase: increased proteolytic stability by protein engineering. , 1993, Protein engineering.

[116]  L. Johnson,et al.  The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate , 1993, FEBS letters.

[117]  J. Oda,et al.  Lipase from Pseudomonas aeruginosa. Production in Escherichia coli and activation in vitro with a protein from the downstream gene. , 1993, European journal of biochemistry.

[118]  D. Wilton A continuous fluorescence-displacement assay for triacylglycerol lipase and phospholipase C that also allows the measurement of acylglycerols. , 1991, The Biochemical journal.

[119]  Y. Gilboa,et al.  Enzymatic syntheses of alkyds. II: lipase-catalyzed polytransesterification of dichloroethyl fumarate with aliphatic and aromatic diols. , 1991, Biotechnology and bioengineering.

[120]  L. S. Holst,et al.  Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[121]  J. Tommassen,et al.  Protein secretion in Pseudomonas aeruginosa. , 1992, FEMS microbiology reviews.

[122]  U. Winkler,et al.  A novel biological function of alginate in Pseudomonas aeruginosa and its mucoid mutants: stimulation of exolipase , 1984 .

[123]  M. Schneider,et al.  Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-diacylglycerols , 1992 .

[124]  B Rubin,et al.  Insights into interfacial activation from an open structure of Candida rugosa lipase. , 1994, The Journal of biological chemistry.

[125]  O. Yoo,et al.  Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. , 1991, Agricultural and biological chemistry.