Statistical emulation of climate model projections based on precomputed GCM runs

AbstractThe authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.

[1]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[2]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[3]  Peter Schmidt,et al.  The Theory and Practice of Econometrics , 1985 .

[4]  John F. B. Mitchell,et al.  Towards the Construction of Climate Change Scenarios , 1999 .

[5]  J. Møller,et al.  Handbook of Spatial Statistics , 2008 .

[6]  M. Hulme,et al.  Portraying climate scenario uncertainties in relation to tolerable regional climate change , 1998 .

[7]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[8]  Matthew D. Collins,et al.  Assessing the Relative Roles of Initial and Boundary Conditions in Interannual to Decadal Climate Predictability , 2002 .

[9]  Robin K. S. Hankin,et al.  Towards the probability of rapid climate change , 2006 .

[10]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[11]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[12]  James R. Gattiker,et al.  Assessing the probability of rare climate events , 2010 .

[13]  James J. Hack,et al.  The Low-Resolution CCSM3 , 2006 .

[14]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[15]  Hayley J. Fowler,et al.  Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling , 2007 .

[16]  Robin K. S. Hankin,et al.  Introducing BACCO, an R Bundle for Bayesian Analysis of Computer Code Output , 2005 .

[17]  Sarah C. B. Raper,et al.  An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC) , 1995 .

[18]  Michael A. West,et al.  A dynamic modelling strategy for Bayesian computer model emulation , 2009 .

[19]  Dorin Drignei,et al.  PARAMETER ESTIMATION FOR COMPUTATIONALLY INTENSIVE NONLINEAR REGRESSION WITH AN APPLICATION TO CLIMATE MODELING , 2008, 0901.3665.

[20]  David McInerney,et al.  Direct and disequilibrium effects on precipitation in transient climates , 2012 .

[21]  Jason Lowe,et al.  Click Here for Full Article , 1989 .

[22]  Richard D. Wilkinson,et al.  Bayesian Calibration of Expensive Multivariate Computer Experiments , 2010 .

[23]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[24]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[25]  Michael E. Schlesinger,et al.  Developing climate scenarios from equilibrium GCM results , 1990 .

[26]  Syukuro Manabe,et al.  Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity , 1967 .

[27]  Filippo Giorgi A Simple Equation for Regional Climate Change and Associated Uncertainty , 2008 .

[28]  J. Murphy,et al.  A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Timothy R. Carter,et al.  Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios , 2003 .

[30]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[31]  Grant Branstator,et al.  Two Limits of Initial-Value Decadal Predictability in a CGCM , 2010 .

[32]  T. D. Mitchell,et al.  Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates , 2003 .

[33]  P. B. Holden,et al.  Dimensionally reduced emulation of an AOGCM for application to integrated assessment modelling , 2010 .

[34]  Chris E. Forest,et al.  Statistical calibration of climate system properties , 2009 .

[35]  K. Taylor,et al.  The Community Climate System Model , 2001 .

[36]  Murali Haran,et al.  Inferring likelihoods and climate system characteristics from climate models and multiple tracers , 2012 .

[37]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[38]  C. Deser,et al.  Uncertainty in climate change projections: the role of internal variability , 2012, Climate Dynamics.

[39]  M. Allen,et al.  Corrigendum: Constraints on future changes in climate and the hydrologic cycle , 2012, Nature.

[40]  Daniel S. Wilks,et al.  ‘Superparameterization’ and statistical emulation in the Lorenz '96 system , 2012 .

[41]  Piers M. Forster,et al.  The transient response of global-mean precipitation to increasing carbon dioxide levels , 2010 .

[42]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[43]  Michael L. Stein,et al.  Global space–time models for climate ensembles , 2013, 1311.7319.

[44]  Timothy M. Lenton,et al.  The Grid ENabled Integrated Earth System Modelling (GENIE) Framework , 2013 .

[45]  Y. Marzouk,et al.  Large-Scale Inverse Problems and Quantification of Uncertainty , 1994 .

[46]  M. J. Bayarri,et al.  Computer model validation with functional output , 2007, 0711.3271.

[47]  Suraje Dessai,et al.  Limited sensitivity analysis of regional climate change probabilities for the 21st century , 2005 .

[48]  W. Collins,et al.  Global climate projections , 2007 .

[49]  Ken Caldeira,et al.  Fast versus slow response in climate change: implications for the global hydrological cycle , 2010 .

[50]  Peter Green The Oxford Handbook of Applied Bayesian Analysis , 2010 .

[51]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[52]  Ken Caldeira,et al.  Why is there a short‐term increase in global precipitation in response to diminished CO2 forcing? , 2011 .

[53]  S. Solman,et al.  Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations , 2010 .

[54]  Michael Goldstein,et al.  Fast linked analyses for scenario‐based hierarchies , 2012 .

[55]  W. Collins,et al.  The Community Climate System Model: CCSM3 , 2004 .

[56]  Hui Wang,et al.  Statistical–Dynamical Predictions of Seasonal North Atlantic Hurricane Activity , 2011 .

[57]  Matthew D. Collins,et al.  Climate predictability on interannual to decadal time scales: the initial value problem , 2002 .

[58]  Matthew D. Collins,et al.  Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations , 2006 .

[59]  J. Rougier Efficient Emulators for Multivariate Deterministic Functions , 2008 .

[60]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[61]  B. Sansó,et al.  Inferring climate system properties using a computer model , 2008 .