Using gene networks to drug target identification

Abstract The complete genome sequences have provided a plethora of potential drug targets. Gene network technique holds the promise of providing a conceptual framework for analysis of the profusion of biological data being generated on potential drug targets and providing insights to understand the biological regulatory mechanisms in diseases, which are playing an increasingly important role in searching for novel drug targets from the information contained in genomics. In this paper, we discuss some of the network-based approaches for identifying drug targets, with the emphasis on the gene network strategy. In addition, some of the relevant data resources and computational tools are given.

[1]  Zhenjun Hu,et al.  VisANT: data-integrating visual framework for biological networks and modules , 2005, Nucleic Acids Res..

[2]  Neil D. Rawlings,et al.  MEROPS: the protease database , 2002, Nucleic Acids Res..

[3]  Satoru Miyano,et al.  Use of Gene Networks for Identifying and Validating Drug Targets , 2003, J. Bioinform. Comput. Biol..

[4]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[5]  Carolina Cruz-Neira,et al.  Integration of metabolic networks and gene expression in virtual reality , 2005, Bioinform..

[6]  David W. Mount,et al.  Pathway Miner: extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data , 2004, Bioinform..

[7]  Hitoshi Iba,et al.  Identifying the Gene Regulatory Network by Real-Coded, Variable-Length, and Multiple-Stage GA , 2000 .

[8]  G S Michaels,et al.  Cluster analysis and data visualization of large-scale gene expression data. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[9]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[10]  Gert Vriend,et al.  Collecting and harvesting biological data: the GPCRDB and NucleaRDB information systems , 2001, Nucleic Acids Res..

[11]  Zohar Yakhini,et al.  Clustering gene expression patterns , 1999, J. Comput. Biol..

[12]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[13]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[14]  Narayanaswamy Srinivasan,et al.  KinG: a database of protein kinases in genomes , 2004, Nucleic Acids Res..

[15]  Satoru Miyano,et al.  Inferring qualitative relations in genetic networks and metabolic pathways , 2000, Bioinform..

[16]  S. Bergmann,et al.  Similarities and Differences in Genome-Wide Expression Data of Six Organisms , 2003, PLoS biology.

[17]  Y. Chen,et al.  Ratio-based decisions and the quantitative analysis of cDNA microarray images. , 1997, Journal of biomedical optics.

[18]  A. Sands,et al.  Knockouts model the 100 best-selling drugs—will they model the next 100? , 2003, Nature Reviews Drug Discovery.

[19]  Karla K Kopec,et al.  Target identification and validation in drug discovery: the role of proteomics. , 2005, Biochemical pharmacology.

[20]  Yu Zong Chen,et al.  TRMP: a database of therapeutically relevant multiple pathways , 2004, Bioinform..

[21]  Satoru Miyano,et al.  Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations , 2002, Pacific Symposium on Biocomputing.

[22]  Teresa Head-Gordon,et al.  Computational challenges in structural and functional genomics , 2001, IBM Syst. J..

[23]  Nicolas Le Novère,et al.  LGICdb: the ligand-gated ion channel database , 2001, Nucleic Acids Res..

[24]  Carsten Peterson,et al.  Analyzing tumor gene expression profiles , 2003, Artif. Intell. Medicine.

[25]  Hsuan-Cheng Huang,et al.  GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data , 2004, Bioinform..

[26]  G. Terstappen,et al.  In silico research in drug discovery. , 2001, Trends in pharmacological sciences.

[27]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[28]  Hidde de Jong,et al.  Genetic Network Analyzer: qualitative simulation of genetic regulatory networks , 2003, Bioinform..

[29]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2004, Nucleic Acids Res..

[30]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[31]  Erich Bornberg-Bauer,et al.  BioMiner - modeling, analyzing, and visualizing biochemical pathways and networks , 2002, ECCB.

[32]  Satoru Miyano,et al.  Using Protein-Protein Interactions for Refining Gene Networks Estimated from Microarray Data by Bayesian Networks , 2003, Pacific Symposium on Biocomputing.

[33]  M Wahde,et al.  Coarse-grained reverse engineering of genetic regulatory networks. , 2000, Bio Systems.

[34]  Kousuke Goto,et al.  ASIAN: a web server for inferring a regulatory network framework from gene expression profiles , 2005, Nucleic Acids Res..

[35]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[36]  Ed Keedwell,et al.  Single-layer artificial neural networks for gene expression analysis , 2004, Neurocomputing.

[37]  Ivan Bratko,et al.  GenePath: a system for automated construction of genetic networks from mutant data , 2003, Bioinform..

[38]  Marcel J. T. Reinders,et al.  ROBUST GENETIC NETWORK MODELING BY ADDING NOISY DATA , 2001 .

[39]  Kevin Murphy,et al.  Modelling Gene Expression Data using Dynamic Bayesian Networks , 2006 .

[40]  Hongzhe Li,et al.  Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data , 2004, Bioinform..

[41]  Gary D. Stormo,et al.  Modeling Regulatory Networks with Weight Matrices , 1998, Pacific Symposium on Biocomputing.

[42]  Andrea Califano,et al.  Analysis of Gene Expression Microarrays for Phenotype Classification , 2000, ISMB.

[43]  Akutsu,et al.  A System for Identifying Genetic Networks from Gene Expression Patterns Produced by Gene Disruptions and Overexpressions. , 1998, Genome informatics. Workshop on Genome Informatics.

[44]  J. Drews Genomic sciences and the medicine of tomorrow , 1996, Nature Biotechnology.

[45]  Berthold Göttgens,et al.  TFBScluster: a resource for the characterization of transcriptional regulatory networks , 2005, Bioinform..

[46]  Daniel Auerbach,et al.  Protein-protein interactions as a basis for drug target identification , 2003 .

[47]  Richard Scheines,et al.  Constructing Bayesian Network Models of Gene Expression Networks from Microarray Data , 2000 .

[48]  Masahiro Okamoto,et al.  Development of a System for the Inference of Large Scale Genetic Networks , 2000, Pacific Symposium on Biocomputing.

[49]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[50]  Scott Patterson Selecting targets for therapeutic validation through differential protein expression using chromatography-mass spectrometry , 2002, ECCB.

[51]  Guy Perrière,et al.  NUREBASE: database of nuclear hormone receptors , 2002, Nucleic Acids Res..

[52]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[53]  Edward R. Dougherty,et al.  Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks , 2002, Bioinform..

[54]  Daniel Hanisch,et al.  ToPNet--an application for interactive analysis of expression data and biological networks. , 2004, Bioinformatics.

[55]  E. Dougherty,et al.  Gene perturbation and intervention in probabilistic Boolean networks. , 2002, Bioinformatics.

[56]  Steven C. Lawlor,et al.  GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways , 2002, Nature Genetics.

[57]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[58]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..

[59]  R. Russell,et al.  Illuminating drug discovery with biological pathways , 2005, FEBS letters.

[60]  David B. Allison STATISTICAL METHODS FOR MICROARRAY RESEARCH FOR DRUG TARGET IDENTIFICATION , 2002 .

[61]  Jeffrey Augen,et al.  The evolving role of information technology in the drug discovery process. , 2002, Drug discovery today.

[62]  Gert Vriend,et al.  GPCRDB information system for G protein-coupled receptors , 2003, Nucleic Acids Res..

[63]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[64]  X. Chen,et al.  TTD: Therapeutic Target Database , 2002, Nucleic Acids Res..

[65]  Akihiko Konagaya,et al.  GSCope: a clipped fisheye viewer effective for highly complicated biomolecular network graphs , 2003, Bioinform..

[66]  Eric J Kunkel,et al.  Systems biology in drug discovery. , 2006, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference.

[67]  David Botstein,et al.  The Stanford Microarray Database , 2001, Nucleic Acids Res..

[68]  Nikolay A. Kolchanov,et al.  GeneNet: a gene network database and its automated visualization , 1998, Bioinform..

[69]  Satoru Miyano,et al.  Estimation of Genetic Networks and Functional Structures Between Genes by Using Bayesian Networks and Nonparametric Regression , 2001, Pacific Symposium on Biocomputing.

[70]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[71]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[72]  D. Valle,et al.  Online Mendelian Inheritance In Man (OMIM) , 2000, Human mutation.

[73]  P. Whittaker What is the relevance of bioinformatics to pharmacology? , 2003, Trends in pharmacological sciences.

[74]  Robert Giegerich,et al.  PathFinder: reconstruction and dynamic visualization of metabolic pathways , 2002, Bioinform..