Effects of n-type modulation-doping barriers and a linear graded-composition GaInAsP intermediate layer on the 1.3 μm AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes

We report the fabrication, characterization, and comparison of four 1.3μm AlGaInAs∕AlGaInAs strain-compensated multiple-quantum-well (SC-MQW) laser structures: (1) sample A—with only an undoped SC-MQW active region, (2) sample B—with an undoped SC-MQW active region and a linear graded-composition (LGC) GaInAsP intermediate layer, (3) sample C—with an n-type modulation-doping (MD) SC-MQW active region, and (4) sample D—with an n-type MD-SC-MQW active region combined with a LGC GaInAsP intermediate layer. The inclusion of either n-type modulation-doped SC-MQW active region or LGC GaInAsP intermediate layer can improve the performance of a laser diode (LD). The LD sample D, which includes both an n-type MD-SC-MQW active region and a LGC GaInAsP intermediate layer, exhibits the best overall performance including a threshold current of 12.5mA, a characteristic temperature of 85K in 20–80°C temperature range, a lasing wavelength shift of 0.38nm∕K, and a relaxation frequency response of 9.9GHz.

[1]  Ming C. Wu,et al.  Effect of InGaAsP intermediate layer in 1.3 μm AlGaInAs strain-compensated multiple quantum well laser diodes , 2003 .

[2]  W. Ho,et al.  1.3-/spl mu/m n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes , 2002 .

[3]  E. O’Reilly,et al.  Experimental analysis of temperature dependence in 1.3-/spl mu/m AlGaInAs-InP strained MQW lasers , 1999 .

[4]  Kenichi Iga,et al.  Record high characteristic temperature (To = 122 K) of 1.55 [micro sign]m strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier , 1999 .

[5]  Kuo-Shung Liu,et al.  Low threshold current and high temperature operation of 1.55 [micro sign]m strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes , 1998 .

[6]  T. Kamijoh,et al.  1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer , 1998, IEEE Photonics Technology Letters.

[7]  Masahiro Kobayashi,et al.  Effect of recombination in separate-confinement heterostructure (SCH) layers on temperature characteristics of semiconductor lasers , 1997 .

[8]  Kouji Nakahara,et al.  1.3-/spl mu/m InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers , 1997 .

[9]  Hiromi Oohashi,et al.  Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3-/spl mu/m InP-based strained-layer quantum-well lasers , 1996 .

[10]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[11]  H. Shimizu,et al.  Strained GaInAs-AlGaInAs 1.5-/spl mu/m-wavelength multiquantum-well lasers loaded with GaInAs-AlInAs multiquantum barriers at the p-side optical confinement layer , 1995 .

[12]  Tawee Tanbun-Ek,et al.  Analysis of gain in determining T/sub 0/ in 1.3 /spl mu/m semiconductor lasers , 1995 .

[13]  Gregory Belenky,et al.  Novel design of AlGaInAs-InP lasers operating at 1.3 /spl mu/m , 1995 .

[14]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[15]  T. J. Dunn,et al.  Effects of n‐type modulation doping of quantum wells on the dynamics of photoluminescence , 1993 .

[16]  Ferdinand Scholz,et al.  Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum‐well lasers , 1993 .

[17]  P. D. Dapkus,et al.  Effect of Auger recombination and differential gain on the temperature sensitivity of 1.5 μm quantum well lasers , 1993 .

[18]  D. L. Coblentz,et al.  Temperature dependence of long wavelength semiconductor lasers , 1992 .

[19]  Kazuhisa Uomi,et al.  Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory , 1990 .

[20]  J. I. Davies,et al.  AlGaInAs/InP double heterostructure lasers grown by low-pressure metal organic vapour-phase epitaxy for emission at 1300 nm , 1988 .

[21]  Amnon Yariv,et al.  Carrier leakage and temperature dependence of InGaAsP lasers , 1983 .

[22]  N. Dutta,et al.  Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .

[23]  Masahiro Asada,et al.  The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .