Effects of n-type modulation-doping barriers and a linear graded-composition GaInAsP intermediate layer on the 1.3 μm AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes
暂无分享,去创建一个
Ming C. Wu | K. Cheng | W. Ho | P. Lei | Chia-Chien Lin | Ming-Yuan Wu | Chyi-Dar Yang
[1] Ming C. Wu,et al. Effect of InGaAsP intermediate layer in 1.3 μm AlGaInAs strain-compensated multiple quantum well laser diodes , 2003 .
[2] W. Ho,et al. 1.3-/spl mu/m n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes , 2002 .
[3] E. O’Reilly,et al. Experimental analysis of temperature dependence in 1.3-/spl mu/m AlGaInAs-InP strained MQW lasers , 1999 .
[4] Kenichi Iga,et al. Record high characteristic temperature (To = 122 K) of 1.55 [micro sign]m strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier , 1999 .
[5] Kuo-Shung Liu,et al. Low threshold current and high temperature operation of 1.55 [micro sign]m strain-compensated multiple quantum well AlInAs/AlGaInAs laser diodes , 1998 .
[6] T. Kamijoh,et al. 1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer , 1998, IEEE Photonics Technology Letters.
[7] Masahiro Kobayashi,et al. Effect of recombination in separate-confinement heterostructure (SCH) layers on temperature characteristics of semiconductor lasers , 1997 .
[8] Kouji Nakahara,et al. 1.3-/spl mu/m InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers , 1997 .
[9] Hiromi Oohashi,et al. Study on the dominant mechanisms for the temperature sensitivity of threshold current in 1.3-/spl mu/m InP-based strained-layer quantum-well lasers , 1996 .
[10] L. Coldren,et al. Diode Lasers and Photonic Integrated Circuits , 1995 .
[11] H. Shimizu,et al. Strained GaInAs-AlGaInAs 1.5-/spl mu/m-wavelength multiquantum-well lasers loaded with GaInAs-AlInAs multiquantum barriers at the p-side optical confinement layer , 1995 .
[12] Tawee Tanbun-Ek,et al. Analysis of gain in determining T/sub 0/ in 1.3 /spl mu/m semiconductor lasers , 1995 .
[13] Gregory Belenky,et al. Novel design of AlGaInAs-InP lasers operating at 1.3 /spl mu/m , 1995 .
[14] Rajaram Bhat,et al. High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .
[15] T. J. Dunn,et al. Effects of n‐type modulation doping of quantum wells on the dynamics of photoluminescence , 1993 .
[16] Ferdinand Scholz,et al. Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum‐well lasers , 1993 .
[17] P. D. Dapkus,et al. Effect of Auger recombination and differential gain on the temperature sensitivity of 1.5 μm quantum well lasers , 1993 .
[18] D. L. Coblentz,et al. Temperature dependence of long wavelength semiconductor lasers , 1992 .
[19] Kazuhisa Uomi,et al. Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory , 1990 .
[20] J. I. Davies,et al. AlGaInAs/InP double heterostructure lasers grown by low-pressure metal organic vapour-phase epitaxy for emission at 1300 nm , 1988 .
[21] Amnon Yariv,et al. Carrier leakage and temperature dependence of InGaAsP lasers , 1983 .
[22] N. Dutta,et al. Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .
[23] Masahiro Asada,et al. The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption , 1980 .