Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments

Abstract The present study focusses on correlation and synchronisation of Weichselian Lateglacial varved lake sediments from western Germany (Meerfelder Maar, Eifel region), northern Germany (Hamelsee, Lower Saxony), central Poland (Lake Gości a z) and eastern Poland (Lake Perespilno) by using varve chronology, tephrochronology, palynostratigraphy and stable isotopes. Comparison of the several independent time scales shows that biotic and abiotic parameters respond abruptly and quasi-synchronously, within the errors of the different chronologies, during the Younger Dryas/Preboreal transition. Moreover, there is a consensus about the length of the Younger Dryas cold stage of 1100–1150 varve years. In the Allerod the prominent Laacher See tephra (12,880 varve years BP) can be used to fix floating varve chronologies. The relative duration of this biozone has been determined in Meerfelder Maar and Hamelsee at between 625 and 670 varve years. In the Meerfelder Maar a combination of continuous varve counting and biostratigraphy has been possible for the almost entire Lateglacial. The comparison between continental limnic sequences and Greenland ice-core records should be made on the basis of independent chronologies in both archives. It is more practicable to develop regional stratotypes on the continental regions instead of simply using ice cores as stratotypes for the Lateglacial for terrestrial European records. In this respect, annually laminated lacustrine sequences have a great potential.

[1]  E. Bard,et al.  High-resolution lacustrine record of the late glacial/holocene transition in central Europe , 1993 .

[2]  H. Birks,et al.  Late‐glacial climatic oscillations as recorded in Swiss lake sediments , 1992 .

[3]  German oak and pine (super 14) C calibration, 7200-9439 BC. , 1993 .

[4]  B. Kromer,et al.  A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary , 1991, Nature.

[5]  J. Merkt The Alleroed - duration and climate as derived from laminated lake sediments , 1994 .

[6]  H. H. Birks,et al.  A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway , 1998 .

[7]  J. W. Beck,et al.  INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP , 1998, Radiocarbon.

[8]  B. Zolitschka Paläoklimatische Bedeutung laminierter Sedimente , 1998 .

[9]  M. Stuiver,et al.  The GISP2 δ18O Climate Record of the Past 16,500 Years and the Role of the Sun, Ocean, and Volcanoes , 1995, Quaternary Research.

[10]  T. Goslar,et al.  Lateglacial and holocene water-level changes of the Gościa̧ż Lake, Central Poland, derived from carbon isotope studies of laminated sediment , 1995 .

[11]  L. Starkel,et al.  Lake Gościaż, Central Poland: a monographic study, Part 1. , 1998 .

[12]  B. Geel,et al.  A palaeoecological study of an upper late glacial and holocene sequence from “de borchert”, The Netherlands , 1980 .

[13]  G. Coope,et al.  Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands) , 1989 .

[14]  R. Alley,et al.  Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores , 1993, Nature.

[15]  J. Iversen The late-glacial flora of Denmark and its relation to climate and soil , 1954 .

[16]  T. L. Rasmussen,et al.  Synchronized TerrestrialAtmospheric Deglacial Records Around the North Atlantic , 1996, Science.

[17]  E. Bard,et al.  High concentration of atmospheric 14C during the Younger Dryas cold episode , 1995, Nature.

[18]  Revision and tentative extension of the tree-ring based 14C calibration, 9200-11,855 cal BP , 1998 .

[19]  B. Kromer,et al.  Paleo-environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree-ring chronologies , 1999 .

[20]  J. Overpeck,et al.  Deglacial changes in ocean circulation from an extended radiocarbon calibration , 1998, Nature.

[21]  H. A. P. Ingram,et al.  Botanisch-Geologische Moorkunde. , 1978 .

[22]  Achim Brauer,et al.  Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany , 1999 .

[23]  T. Litt,et al.  Bio- and chronostratigraphy of the lateglacial in the Eifel region, Germany , 1999 .

[24]  B. Lottermoser,et al.  Sedimentological proof and dating of the Early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany) , 1995 .

[25]  A. Brauer,et al.  High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany , 1999 .

[26]  P. Bogaard,et al.  40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance , 1995 .

[27]  J. Jouzel,et al.  Irregular glacial interstadials recorded in a new Greenland ice core , 1992, Nature.

[28]  Uffe Andersen,et al.  The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability , 1997 .

[29]  H. Oeschger,et al.  14C Dating of Plant Macrofossils in Lake Sediment , 1986, Radiocarbon.

[30]  J. Mojski M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska, L. Starkel & W. Szafer - Lake Gościąż, Central Poland. Monographic Study , 2000 .

[31]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[32]  J Merkt,et al.  Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony , 1999 .

[33]  J. Iversen The Development of Denmark's Nature since the Last Glacial , 1973 .

[34]  Hartmut Usinger Pollenstratigraphische, vegetations- und klimageschichtliche Gliederung des „Bölling-Alleröd-Komplexes“ in Schleswig-Holstein und ihre Bedeutung für die Spätglazial-Stratigraphie in benachbarten Gebieten , 1985 .

[35]  J. Lowe,et al.  An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group , 1998 .

[36]  Michael Friedrich,et al.  Revisions and Extension of the Hohenheim Oak and Pine Chronologies: New Evidence About the Timing of the Younger Dryas/Preboreal Transition , 1998, Radiocarbon.

[37]  T. Goslar,et al.  Climate-related variations in the composition of the Late Glacial and early Holocene sediments of Lake Perespilno (eastern Poland) , 1999 .

[38]  A. Lotter Absolute Dating of the Late-Glacial Period in Switzerland Using Annually Laminated Sediments , 1991, Quaternary Research.

[39]  T. Goslar,et al.  Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes , 2000, Nature.

[40]  F. Firbas,et al.  Late- and Post-Glacial Forest History in Central Europa@@@Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. I. Allgemeine Waldgeschichte@@@Spat- und nacheiszeitliche Waldgeschichte Mitteleuropas nordlich der Alpen. I. Allgemeine Waldgeschichte , 1950 .