Arbitrage-Free Neural-SDE Market Models

Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying financial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate neural SDE models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model.

[1]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[2]  Matthias R. Fengler Arbitrage-free smoothing of the implied volatility surface , 2009 .

[3]  Jan Kallsen,et al.  On a Heath–Jarrow–Morton approach for stock options , 2013, Finance Stochastics.

[4]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[5]  M. Yor,et al.  Stochastic Volatility for Levy Processes , 2001 .

[6]  A. Itkin,et al.  Deep learning calibration of option pricing models: some pitfalls and solutions , 2019, 1906.03507.

[7]  Coralia Cartis,et al.  Improving the Flexibility and Robustness of Model-based Derivative-free Optimization Solvers , 2018, ACM Trans. Math. Softw..

[8]  Rama Cont,et al.  Stochastic Models of Implied Volatility Surfaces , 2002 .

[9]  M. Schweizer,et al.  TERM STRUCTURES OF IMPLIED VOLATILITIES: ABSENCE OF ARBITRAGE AND EXISTENCE RESULTS , 2007 .

[10]  Walter Schachermayer,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[11]  R. Carmona HJM: A Unified Approach to Dynamic Models for Fixed Income, Credit and Equity Markets , 2007 .

[12]  Christoph Reisinger,et al.  Detecting and Repairing Arbitrage in Traded Option Prices , 2020, Applied Mathematical Finance.

[13]  Matthias R. Fengler,et al.  Semi-Nonparametric Estimation of the Call Price Surface Under Strike and Time-to-expiry No-Arbitrage Constraints , 2013 .

[14]  A. Friedman,et al.  Asymptotic stability and spiraling properties for solutions of stochastic equations , 1973 .

[15]  Daniel C. Schwarz,et al.  Market completion with derivative securities , 2015, Finance Stochastics.

[16]  Laurent Cousot,et al.  Conditions on Option Prices for Absence of Arbitrage and Exact Calibration , 2006 .

[17]  Uwe Wystup,et al.  FX volatility smile construction , 2012 .

[18]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[19]  Arbitrage-free market models for liquid options , 2008 .

[20]  Michal Jex,et al.  Pricing Exotics Under the Smile , 1999 .

[21]  Vladimir V. Piterbarg Markovian Projection Method for Volatility Calibration , 2006 .

[22]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[23]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[24]  Bruno Dupire Pricing with a Smile , 1994 .

[25]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[26]  Patrick S. Hagan,et al.  Arbitrage-Free SABR , 2014 .

[27]  Toby Daglish,et al.  Volatility surfaces: theory, rules of thumb, and empirical evidence , 2007 .

[28]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[29]  René Carmona,et al.  Local volatility dynamic models , 2009, Finance Stochastics.

[30]  René Carmona,et al.  Tangent Lévy market models , 2012, Finance Stochastics.

[31]  Jean Jacod,et al.  Risk-neutral compatibility with option prices , 2010, Finance Stochastics.

[32]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[33]  A market model for stochastic implied volatility , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[35]  Johannes Wissel,et al.  Arbitrage-free market models for option prices: the multi-strike case , 2008, Finance Stochastics.

[36]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[37]  David M. Kreps Arbitrage and equilibrium in economies with infinitely many commodities , 1981 .

[38]  Jim Gatheral,et al.  Arbitrage-free SVI volatility surfaces , 2014 .

[39]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[40]  P. Carr,et al.  A note on sufficient conditions for no arbitrage , 2005 .

[41]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[42]  Matthew Dixon,et al.  Deep Local Volatility , 2020, Risks.

[43]  Mark Davis,et al.  Market completion using options , 2007 .

[44]  Emanuel Derman,et al.  STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .

[45]  Yoshua Bengio,et al.  Incorporating Functional Knowledge in Neural Networks , 2009, J. Mach. Learn. Res..

[46]  Christa Cuchiero,et al.  A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models , 2020, Risks.

[47]  Lukasz Szpruch,et al.  V-integrability, asymptotic stability and comparison property of explicit numerical schemes for non-linear SDEs , 2017, Math. Comput..

[48]  Michael Brückner,et al.  Double Description Method , 2013 .

[49]  J. F. McDonald,et al.  A degenerate extreme point strategy for the classification of linear constraints as redundant or necessary , 1989 .

[50]  C. Reisinger,et al.  Calibration of local-stochastic and path-dependent volatility models to vanilla and no-touch options , 2019, The Journal of Computational Finance.

[51]  P. Hagan,et al.  MANAGING SMILE RISK , 2002 .

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  N. Kahalé An Arbitrage-free Interpolation of Volatilities , 2022 .