On the power of the semi-separated pair decomposition
暂无分享,去创建一个
Michiel H. M. Smid | Paz Carmi | Mohammad Ali Abam | Mohammad Farshi | M. Smid | Paz Carmi | M. Farshi
[1] S. Rao Kosaraju,et al. Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.
[2] Joachim Gudmundsson,et al. Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.
[3] Michiel H. M. Smid,et al. Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..
[4] Michael T. Goodrich,et al. Balanced aspect ratio trees: combining the advantages of k-d trees and octrees , 1999, SODA '99.
[5] Michiel H. M. Smid,et al. Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[6] Michiel H. M. Smid,et al. Spanners of Complete k-Partite Geometric Graphs , 2009, SIAM J. Comput..
[7] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[8] Joachim Gudmundsson,et al. Ordered theta graphs , 2004, CCCG.
[9] Peter Widmayer,et al. Spatial Data Structures: Concepts and Design Choices , 1996, Algorithmic Foundations of Geographic Information Systems.
[10] Michiel H. M. Smid,et al. Spanners of Complete k -Partite Geometric Graphs , 2007, LATIN.
[11] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[12] Maarten Löffler,et al. Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.
[13] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[14] Maarten Löffler,et al. Approximating largest convex hulls for imprecise points , 2008, J. Discrete Algorithms.
[15] Mark de Berg,et al. Computational geometry: algorithms and applications, 3rd Edition , 1997 .
[16] Joachim Gudmundsson,et al. Geometric Spanners for Weighted Point Sets , 2010, Algorithmica.
[17] Sariel Har-Peled,et al. New constructions of SSPDs and their applications , 2012, Comput. Geom..
[18] Jing Shan,et al. On Spatial-Range Closest-Pair Query , 2003, SSTD.
[19] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[20] Maarten Löffler,et al. Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..
[21] Prosenjit Gupta. Range-Aggregate Proximity Queries , 2007 .
[22] Yufei Tao,et al. Range aggregate processing in spatial databases , 2004, IEEE Transactions on Knowledge and Data Engineering.
[23] Kasturi R. Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[24] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[25] Michiel Smid,et al. Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.
[26] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[27] Mark de Berg,et al. Computational Geometry: Algorithms and Applications, Second Edition , 2000 .
[28] Béla Bollobás,et al. On separating systems , 2007, Eur. J. Comb..
[29] Timothy M. Chan. Optimal Partition Trees , 2010, SCG.
[30] J. Sack,et al. Handbook of computational geometry , 2000 .
[31] Prosenjit Gupta. Range-Aggregate Query Problems Involving Geometric Aggregation Operations , 2006, Nord. J. Comput..
[32] Pankaj K. Agarwal,et al. Geometric Range Searching and Its Relatives , 2007 .
[33] Michiel H. M. Smid,et al. Data structures for range-aggregate extent queries , 2008, Comput. Geom..