On the power of the semi-separated pair decomposition

A Semi-Separated Pair Decomposition (SSPD), with parameter s>1, of a set S@?R^d is a set {(A"i,B"i)} of pairs of subsets of S such that for each i, there are balls D"A"""i and D"B"""i containing A"i and B"i respectively such that d(D"A"""i,D"B"""i)>=s@?min(radius(D"A"""i),radius(D"B"""i)), and for any two points p,q@?S there is a unique index i such that p@?A"i and q@?B"i or vice versa. In this paper, we use the SSPD to obtain the following results: First, we consider the construction of geometric t-spanners in the context of imprecise points and we prove that any set S@?R^d of n imprecise points, modeled as pairwise disjoint balls, admits a t-spanner with O(nlogn/(t-1)^d) edges that can be computed in O(nlogn/(t-1)^d) time. If all balls have the same radius, the number of edges reduces to O(n/(t-1)^d). Secondly, for a set of n points in the plane, we design a query data structure for half-plane closest-pair queries that can be built in O(n^2log^2n) time using O(nlogn) space and answers a query in O(n^1^/^2^+^@e) time, for any @e>0. By reducing the preprocessing time to O(n^1^+^@e) and using O(nlog^2n) space, the query can be answered in O(n^3^/^4^+^@e) time. Moreover, we improve the preprocessing time of an existing axis-parallel rectangle closest-pair query data structure from quadratic to near-linear. Finally, we revisit some previously studied problems, namely spanners for complete k-partite graphs and low-diameter spanners, and show how to use the SSPD to obtain simple algorithms for these problems.

[1]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[2]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[3]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[4]  Michael T. Goodrich,et al.  Balanced aspect ratio trees: combining the advantages of k-d trees and octrees , 1999, SODA '99.

[5]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[6]  Michiel H. M. Smid,et al.  Spanners of Complete k-Partite Geometric Graphs , 2009, SIAM J. Comput..

[7]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[8]  Joachim Gudmundsson,et al.  Ordered theta graphs , 2004, CCCG.

[9]  Peter Widmayer,et al.  Spatial Data Structures: Concepts and Design Choices , 1996, Algorithmic Foundations of Geographic Information Systems.

[10]  Michiel H. M. Smid,et al.  Spanners of Complete k -Partite Geometric Graphs , 2007, LATIN.

[11]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[12]  Maarten Löffler,et al.  Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.

[13]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[14]  Maarten Löffler,et al.  Approximating largest convex hulls for imprecise points , 2008, J. Discrete Algorithms.

[15]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[16]  Joachim Gudmundsson,et al.  Geometric Spanners for Weighted Point Sets , 2010, Algorithmica.

[17]  Sariel Har-Peled,et al.  New constructions of SSPDs and their applications , 2012, Comput. Geom..

[18]  Jing Shan,et al.  On Spatial-Range Closest-Pair Query , 2003, SSTD.

[19]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[20]  Maarten Löffler,et al.  Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..

[21]  Prosenjit Gupta Range-Aggregate Proximity Queries , 2007 .

[22]  Yufei Tao,et al.  Range aggregate processing in spatial databases , 2004, IEEE Transactions on Knowledge and Data Engineering.

[23]  Kasturi R. Varadarajan A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[24]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[25]  Michiel Smid,et al.  Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.

[26]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[27]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[28]  Béla Bollobás,et al.  On separating systems , 2007, Eur. J. Comb..

[29]  Timothy M. Chan Optimal Partition Trees , 2010, SCG.

[30]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[31]  Prosenjit Gupta Range-Aggregate Query Problems Involving Geometric Aggregation Operations , 2006, Nord. J. Comput..

[32]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[33]  Michiel H. M. Smid,et al.  Data structures for range-aggregate extent queries , 2008, Comput. Geom..