A Nonlinear Thermal Process Modeling and Identification Using a Fourth-Order S-PARAFAC Volterra Model

This paper proposes a new reduced complexity Volterra model called S-PARAFAC-Volterra. The proposed model is yielded by using the symmetry property of the Volterra kernels and their tensor decomposition using the PARAFAC technique. It takes advantage from previous results where an algorithm for the estimation of the memory and the order of the Volterra model has been presented. The proposed model has been tested to yield a suitable modeling for the nonlinear thermal process Trainer PT326 and the validation results are satisfactory.

[1]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[2]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[3]  Kais Bouzrara,et al.  STRUCTURAL IDENTIFICATION OF A THERMAL PROCESS USING THE VOLTERRA MODEL , 2014 .

[4]  A. Kibangou,et al.  Tensor-based Identification of the Structure of Block-Oriented Nonlinear Systems , 2009 .

[5]  P. Alper A consideration of the discrete Volterra series , 1965 .

[6]  Kais Bouzrara,et al.  Reduced complexity Volterra model of non-linear MISO system , 2012, Int. J. Model. Identif. Control..

[7]  Gérard Favier,et al.  Identification of PARAFAC-Volterra cubic models using an Alternating Recursive Least Squares algorithm , 2004, 2004 12th European Signal Processing Conference.

[8]  A. S. Oshaba,et al.  Bacteria Foraging : A New Technique for Speed Control of DC Series Motor Supplied by Photovoltaic System , 2014 .

[9]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[10]  S. M. Abd-Elazim Optimal PSS Design in a Multimachine Power System via Bacteria Foraging Optimization Algorithm , 2013 .

[11]  Ricardo J. G. B. Campello,et al.  Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..

[12]  E. S. Ali,et al.  Synergy of Particle Swarm Optimization and Bacterial Foraging for SSSC Damping Controller Design , 2013 .

[13]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[14]  Gérard Favier,et al.  IDENTIFICATION OF SVD-PARAFAC BASED THIRD-ORDER VOLTERRA MODELS USING AN ARLS ALGORITHM , 2005 .

[15]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[16]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[17]  S. M. Abd-Elazim,et al.  Power System Stability Enhancement via Bacteria Foraging Optimization Algorithm , 2013 .

[18]  Gérard Favier,et al.  Parametric complexity reduction of Volterra models using tensor decompositions , 2009, 2009 17th European Signal Processing Conference.

[19]  Ricardo J. G. B. Campello,et al.  An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension , 2008, Int. J. Control.

[20]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[21]  José Ragot,et al.  Nonlinear system modeling based on bilinear Laguerre orthonormal bases. , 2013, ISA transactions.

[22]  Ali,et al.  Optimal Power System Stabilizers Design for Multimachine Power System Using Hybrid BFOA-PSO Approach , 2013 .

[23]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[24]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .