A Nonlinear Thermal Process Modeling and Identification Using a Fourth-Order S-PARAFAC Volterra Model
暂无分享,去创建一个
[1] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[2] Leon O. Chua,et al. Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .
[3] Kais Bouzrara,et al. STRUCTURAL IDENTIFICATION OF A THERMAL PROCESS USING THE VOLTERRA MODEL , 2014 .
[4] A. Kibangou,et al. Tensor-based Identification of the Structure of Block-Oriented Nonlinear Systems , 2009 .
[5] P. Alper. A consideration of the discrete Volterra series , 1965 .
[6] Kais Bouzrara,et al. Reduced complexity Volterra model of non-linear MISO system , 2012, Int. J. Model. Identif. Control..
[7] Gérard Favier,et al. Identification of PARAFAC-Volterra cubic models using an Alternating Recursive Least Squares algorithm , 2004, 2004 12th European Signal Processing Conference.
[8] A. S. Oshaba,et al. Bacteria Foraging : A New Technique for Speed Control of DC Series Motor Supplied by Photovoltaic System , 2014 .
[9] Guy A. Dumont,et al. Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .
[10] S. M. Abd-Elazim. Optimal PSS Design in a Multimachine Power System via Bacteria Foraging Optimization Algorithm , 2013 .
[11] Ricardo J. G. B. Campello,et al. Optimal expansions of discrete-time Volterra models using Laguerre functions , 2003, Autom..
[12] E. S. Ali,et al. Synergy of Particle Swarm Optimization and Bacterial Foraging for SSSC Damping Controller Design , 2013 .
[13] Stephen A. Billings,et al. Identi cation of nonlinear systems-A survey , 1980 .
[14] Gérard Favier,et al. IDENTIFICATION OF SVD-PARAFAC BASED THIRD-ORDER VOLTERRA MODELS USING AN ARLS ALGORITHM , 2005 .
[15] R. de Figueiredo. The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.
[16] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[17] S. M. Abd-Elazim,et al. Power System Stability Enhancement via Bacteria Foraging Optimization Algorithm , 2013 .
[18] Gérard Favier,et al. Parametric complexity reduction of Volterra models using tensor decompositions , 2009, 2009 17th European Signal Processing Conference.
[19] Ricardo J. G. B. Campello,et al. An optimal expansion of Volterra models using independent Kautz bases for each kernel dimension , 2008, Int. J. Control.
[20] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[21] José Ragot,et al. Nonlinear system modeling based on bilinear Laguerre orthonormal bases. , 2013, ISA transactions.
[22] Ali,et al. Optimal Power System Stabilizers Design for Multimachine Power System Using Hybrid BFOA-PSO Approach , 2013 .
[23] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[24] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .