Analysis of off-axis performance of compliant mechanisms with applications to mobile millirobot design

We present an approach to quantifying the off-axis stiffness properties of parallel compliant mechanisms used in the design of mobile millirobots. By transforming the stiffness of individual flexure elements and rigid links comprising a compliant mechanism into a global coordinate system, we enable the formulation of an equivalent mechanism stiffness. Using that stiffness in concert with an energy-based performance metric, we predict the performance of a compliant mechanism subjected to a prescribed set of forces in the global coordinate system. We analyze a flexure-based Sarrus linkage and use the performance metric to improve the design by adding topological redundancy. Finally, our approach is experimentally validated by constructing and testing SCM Sarrus linkages in a variety of geometries and topologies and demonstrating agreement between the model and our experiments.

[1]  Göran Stemme,et al.  A WALKING SILICON MICRO-ROBOT , 1999 .

[2]  Yixin Chen,et al.  Estimation of symmetric positive-definite matrices from imperfect measurements , 2002, IEEE Trans. Autom. Control..

[3]  Ronald S. Fearing,et al.  Fast scale prototyping for folded millirobots , 2008, ICRA.

[4]  K. Pister,et al.  Solar powered 10 mg silicon robot , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[5]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[6]  Layton C. Hale,et al.  Optimal design techniques for kinematic couplings , 2001 .

[7]  Ronald S. Fearing,et al.  RoACH: An autonomous 2.4g crawling hexapod robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Yan,et al.  Wing transmission for a micromechanical flying insect , 2001 .

[10]  Alexander H. Slocum,et al.  Design of parallel kinematic XY mechanisms , 2005 .

[11]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[12]  X. Ding,et al.  A screw theory of static beams , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[13]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[14]  Larry L. Howell,et al.  Compliant Joint Design Principles for High Compressive Load Situations , 2005 .

[15]  Robert J. Wood,et al.  Microrobot Design Using Fiber Reinforced Composites , 2008 .

[16]  Martin L. Culpepper,et al.  Design of a low-cost nano-manipulator which utilizes a monolithic, spatial compliant mechanism , 2004 .

[17]  Yong Mo Moon,et al.  DESIGN OF LARGE-DISPLACEMENT COMPLIANT JOINTS , 2005 .

[18]  G. K. Ananthasuresh,et al.  Design of Distributed Compliant Mechanisms , 2003 .

[19]  William Prager,et al.  Optimal structural design for given deflection , 1970 .

[20]  Sridhar Kota,et al.  Robustness of compliant mechanism topology optimization formulations , 1999, Smart Structures.