Algebraic Models of Constant Node Degree Interconnection Networks

[1]  Chita R. Das,et al.  Fast data selection and broadcast on the Butterfly network , 1988, [1988] Proceedings. Workshop on the Future Trends of Distributed Computing Systems in the 1990s.

[2]  Arnold L. Rosenberg,et al.  A Tight Layout of the Butterfly Network , 1998, Theory of Computing Systems.

[3]  Rainer Feldmann,et al.  The Cube-Connected Cycles Network Is a Subgraph of the Butterfly Network , 1992, Parallel Process. Lett..

[4]  Arnold L. Rosenberg,et al.  Optimal emulations by butterfly-like networks , 1996, JACM.

[5]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[6]  C. Y. Roger Chen,et al.  Optimal Routing Algorithm and the Diameter of the Cube-Connected Cycles , 1993, IEEE Trans. Parallel Distributed Syst..

[7]  Dhiraj K. Pradhan,et al.  The De Bruijn Multiprocessor Network: A Versatile Parallel Processing and Sorting Network for VLSI , 1989, IEEE Trans. Computers.

[8]  Meghanad D. Wagh,et al.  Extended Butterfly Networks , 2005, ISCA PDCS.

[9]  Abhiram G. Ranade Optimal speedup for backtrack search on a butterfly network , 1991, SPAA '91.

[10]  Marc Baumslag,et al.  An Algebraic Analysis of the Connectivity of DeBruijn and Shuffle-exchange Digraphs , 1995, Discret. Appl. Math..

[11]  Chang-Hsiung Tsai Cycles embedding in hypercubes with node failures , 2007, Inf. Process. Lett..

[12]  Jimmy J. M. Tan,et al.  Long paths in hypercubes with conditional node-faults , 2009, Inf. Sci..

[13]  Lih-Hsing Hsu,et al.  Cycle embedding in faulty wrapped butterfly graphs , 2003, Networks.

[14]  Jun Yan,et al.  Forwarding index of cube-connected cycles , 2009, Discret. Appl. Math..

[15]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[16]  Eric J. Schwabe Constant-Slowdown Simulations of Normal Hypercube Algorithms on the Butterfly Network , 1993, Inf. Process. Lett..

[17]  Yuuki Tanaka,et al.  On the Pagenumber of the Cube-Connected Cycles , 2008, IWOCA.

[18]  Wentai Liu,et al.  The design of a high-performance scalable architecture for image processing applications , 1990, [1990] Proceedings of the International Conference on Application Specific Array Processors.

[19]  Jaroslav Opatrny,et al.  Broadcasting and Spanning Trees in de Bruijn and Kautz Networks , 1992, Discret. Appl. Math..

[20]  Susanne E. Hambrusch,et al.  Embedding Complete Binary Trees into Butterfly Networks , 1991, IEEE Trans. Computers.

[21]  Sun-Yuan Hsieh Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges , 2006, Parallel Comput..

[22]  Frank Thomson Leighton Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other Networks , 2003 .

[23]  Emmanouel A. Varvarigos,et al.  VLSI layout and packaging of butterfly networks , 2000, SPAA '00.

[24]  Gene Eu Jan,et al.  A perfect load balancing algorithm on cube-connected cycles , 2006 .

[25]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[26]  Ivan Fris,et al.  The Diameter of the Cube-Connected Cycles , 1997, Inf. Process. Lett..

[27]  Jaroslav Opatrny,et al.  Embeddings of Hypercubes and Grids into de Bruijn Graphs , 1994, J. Parallel Distributed Comput..

[28]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[29]  Ding-Zhu Du,et al.  The Hamiltonian property of generalized de Bruijn digraphs , 1991, J. Comb. Theory, Ser. B.

[30]  Pierre Fraigniaud,et al.  Broadcasting and Gossiping in de Bruijn Networks , 1994, SIAM J. Comput..

[31]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[32]  Jing-Kai Lou,et al.  An efficient tag-based routing algorithm for the backward network of a bidirectional general shuffle-exchange network , 2006, IEEE Communications Letters.

[33]  Harold S. Stone,et al.  Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.

[34]  Arnold L. Rosenberg,et al.  Group Action Graphs and Parallel Architectures , 1990, SIAM J. Comput..

[35]  Jun Xiang,et al.  A new addressing scheme for cube-connected cycles network , 2008, 2008 3rd IEEE Conference on Industrial Electronics and Applications.

[36]  Rainer Feldmann,et al.  The Shuffle Exchange Network has a Hamiltonian Path , 1992, MFCS.

[37]  Meghanad D. Wagh,et al.  Butterfly Automorphisms and Edge Faults , 2010, 2010 Ninth International Symposium on Parallel and Distributed Computing.

[38]  Arnold L. Rosenberg,et al.  Cycles in Networks , 1991 .

[39]  Pradip K. Srimani,et al.  Fault Tolerant Ring Embedding in tetravalent Cayley Network Graphs , 1996, J. Circuits Syst. Comput..

[40]  Jung-Sheng Fu Fault-tolerant cycle embedding in the hypercube , 2003, Parallel Comput..

[41]  Chang-Hsiung Tsai,et al.  Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes , 2007, Inf. Sci..

[42]  Gen-Huey Chen,et al.  Cycles in butterfly graphs , 2000 .

[43]  MEGHANAD D. WAGH,et al.  Mapping Cycles and Trees on Wrap-Around Butterfly Graphs , 2005, SIAM J. Comput..

[44]  John H. Reif,et al.  Randomized Algorithms for Binary Search and Load Balancing on Fixed Connection Networks with Geometric Applications , 1994, SIAM J. Comput..

[45]  Jianping Song,et al.  An optimal multicast algorithm for cube-connected cycles , 2008, Journal of Computer Science and Technology.

[46]  Anne Germa,et al.  Cycles in the cube-connected cycles graph , 1998, Discret. Appl. Math..

[47]  Guihai Chen,et al.  Layout of the Cube-connected Cycles without Long Wires , 2001, Comput. J..

[48]  Zhen Chen,et al.  Bidirectional shuffle-exchange network and tag-based routing algorithm , 2003, IEEE Commun. Lett..

[49]  Marc Baumslag,et al.  Fault-tolerance properties of deBruijn and shuffle-exchange networks , 1993, Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed Processing.

[50]  Meghanad D. Wagh,et al.  Enhanced butterfly: A cayley graph with node degree 5 , 2007, ISCA PDCS.