Rare-event Simulation for Neural Network and Random Forest Predictors

We study rare-event simulation for a class of problems where the target hitting sets of interest are defined via modern machine learning tools such as neural networks and random forests. This problem is motivated from fast emerging studies on the safety evaluation of intelligent systems, robustness quantification of learning models, and other potential applications to large-scale simulation in which machine learning tools can be used to approximate complex rare-event set boundaries. We investigate an importance sampling scheme that integrates the dominating point machinery in large deviations and sequential mixed integer programming to locate the underlying dominating points. Our approach works for a range of neural network architectures including fully connected layers, rectified linear units, normalization, pooling and convolutional layers, and random forests built from standard decision trees. We provide efficiency guarantees and numerical demonstration of our approach using a classification model in the UCI Machine Learning Repository.

[1]  Søren Asmussen,et al.  Ruin probabilities , 2001, Advanced series on statistical science and applied probability.

[2]  Yee Whye Teh,et al.  A Statistical Approach to Assessing Neural Network Robustness , 2018, ICLR.

[3]  Nidhi Kalra,et al.  Measuring Automated Vehicle Safety: Forging a Framework , 2018 .

[4]  Yann LeCun,et al.  Off-Road Obstacle Avoidance through End-to-End Learning , 2005, NIPS.

[5]  Werner Sandmann,et al.  Automated State-Dependent Importance Sampling for Markov Jump Processes via Sampling from the Zero-Variance Distribution , 2014, Journal of Applied Probability.

[6]  Bert Zwart,et al.  Efficient rare-event simulation for perpetuities , 2012, 1201.3419.

[7]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2006, Lecture Notes in Computer Science.

[8]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[9]  P. Glasserman,et al.  Counterexamples in importance sampling for large deviations probabilities , 1997 .

[10]  P. Grassberger Go with the Winners: a General Monte Carlo Strategy , 2002, cond-mat/0201313.

[11]  V.F. Nicola,et al.  Adaptive importance sampling simulation of queueing networks , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[12]  S.X. Yang,et al.  A neural network approach to complete coverage path planning , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Jianxiong Xiao,et al.  DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Pierre L'Ecuyer,et al.  Splitting Techniques , 2009, Rare Event Simulation using Monte Carlo Methods.

[15]  J. Blanchet Efficient importance sampling for binary contingency tables , 2009, 0908.0999.

[16]  Mykel J. Kochenderfer,et al.  Next-Generation Airborne Collision Avoidance System , 2012 .

[17]  P. Shahabuddin,et al.  Chapter 11 Rare-Event Simulation Techniques: An Introduction and Recent Advances , 2006, Simulation.

[18]  S. Asmussen Conjugate processes and the silumation of ruin problems , 1985 .

[19]  Henry Lam,et al.  State-dependent importance sampling for rare-event simulation: An overview and recent advances , 2012 .

[20]  P. Glynn,et al.  Efficient rare-event simulation for the maximum of heavy-tailed random walks , 2008, 0808.2731.

[21]  Gerardo Rubino,et al.  Introduction to Rare Event Simulation , 2009, Rare Event Simulation using Monte Carlo Methods.

[22]  S. Juneja,et al.  Rare-event Simulation Techniques : An Introduction and Recent Advances , 2006 .

[23]  J. Christian Gerdes,et al.  Neural network vehicle models for high-performance automated driving , 2019, Science Robotics.

[24]  Jeffrey F. Collamore Importance Sampling Techniques for the Multidimensional Ruin Problem for General Markov Additive Sequences of Random Vectors , 2002 .

[25]  Ding Zhao,et al.  Accelerated Evaluation of Automated Vehicles. , 2016 .

[26]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..

[27]  Philip Koopman,et al.  Autonomous Vehicle Safety: An Interdisciplinary Challenge , 2017, IEEE Intelligent Transportation Systems Magazine.

[28]  Henrik Hult,et al.  On importance sampling with mixtures for random walks with heavy tails , 2012, TOMC.

[29]  Paul Dupuis,et al.  Importance sampling for sums of random variables with regularly varying tails , 2007, TOMC.

[30]  Marvin K. Nakayama,et al.  Techniques for fast simulation of models of highly dependable systems , 2001, IEEE Trans. Reliab..

[31]  Pushmeet Kohli,et al.  Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures , 2018, ICLR.

[32]  R. D. Fresnedo Quick simulation of rare events in networks , 1989, WSC '89.

[33]  Vivek S. Borkar,et al.  Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation , 2006, Oper. Res..

[34]  Sanjit A. Seshia,et al.  Compositional Falsification of Cyber-Physical Systems with Machine Learning Components , 2017, NFM.

[35]  Peter W. Glynn,et al.  Rare-event simulation for infinite server queues , 2002, Proceedings of the Winter Simulation Conference.

[36]  Mark S. Squillante,et al.  PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach , 2018, ICML.

[37]  Bruno Tuffin,et al.  Markov chain importance sampling with applications to rare event probability estimation , 2011, Stat. Comput..

[38]  Michel Mandjes,et al.  Rare Event Simulation for Queues , 2009, Rare Event Simulation using Monte Carlo Methods.

[39]  Tom Rainforth,et al.  Statistically Robust Neural Network Classification , 2019, ArXiv.

[40]  J. Sadowsky Large deviations theory and efficient simulation of excessive backlogs in a GI/GI/m queue , 1991 .

[41]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[42]  P. Dupuis,et al.  Splitting for rare event simulation : A large deviation approach to design and analysis , 2007, 0711.2037.

[43]  Samy Bengio,et al.  Adversarial Machine Learning at Scale , 2016, ICLR.

[44]  A. B. Dieker,et al.  On asymptotically efficient simulation of large deviation probabilities , 2005, Advances in Applied Probability.

[45]  Ding Zhao,et al.  Accelerated Evaluation of Automated Vehicles Using Piecewise Mixture Models , 2017, IEEE Transactions on Intelligent Transportation Systems.

[46]  Amin Saberi,et al.  A Sequential Algorithm for Generating Random Graphs , 2007, Algorithmica.

[47]  J.S. Sadowsky,et al.  On large deviations theory and asymptotically efficient Monte Carlo estimation , 1990, IEEE Trans. Inf. Theory.

[48]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[49]  Peter W. Glynn,et al.  Asymptotic robustness of estimators in rare-event simulation , 2007, TOMC.

[50]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[51]  Michael Chertkov,et al.  Importance sampling the union of rare events with an application to power systems analysis , 2017, Electronic Journal of Statistics.

[52]  Stan C. A. M. Gielen,et al.  Neural Network Dynamics for Path Planning and Obstacle Avoidance , 1995, Neural Networks.

[53]  Henry Lam,et al.  Rare-Event Simulation for Many-Server Queues , 2012, Math. Oper. Res..

[54]  Velibor V. Mivsi'c,et al.  Optimization of Tree Ensembles , 2017, Oper. Res..

[55]  Dennis D. Cox,et al.  Adaptive importance sampling on discrete Markov chains , 1999 .

[56]  Peter W. Glynn,et al.  Rare event simulation for a slotted time M/G/s model , 2009, Queueing Syst. Theory Appl..

[57]  Peter W. Glynn,et al.  A Markov chain perspective on adaptive Monte Carlo algorithms , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[58]  Gerardo Rubino,et al.  Markovian Models for Dependability Analysis , 2009, Rare Event Simulation using Monte Carlo Methods.

[59]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[60]  J. Blanchet,et al.  State-dependent importance sampling for regularly varying random walks , 2008, Advances in Applied Probability.

[61]  Sandeep Juneja,et al.  State-independent Importance Sampling for Random Walks with Regularly Varying Increments , 2012, 1206.3390.

[62]  James M. Rehg,et al.  Learning a Rare Event Detection Cascade by Direct Feature Selection , 2003, NIPS.

[63]  Bert Zwart,et al.  Efficient Rare-Event Simulation for Multiple Jump Events in Regularly Varying Random Walks and Compound Poisson Processes , 2017, Math. Oper. Res..

[64]  Werner Sandmann Rare Event Simulation Methodologies in Systems Biology , 2009, Rare Event Simulation using Monte Carlo Methods.

[65]  A. Skoogh,et al.  DESIGNING IMPORTANCE SAMPLERS TO SIMULATE MACHINE LEARNING PREDICTORS VIA OPTIMIZATION , 2018 .

[66]  Vivek S. Borkar,et al.  Peformance Analysis Conditioned on Rare Events: An Adaptive Simulation Scheme , 2003, Commun. Inf. Syst..

[67]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[68]  Paul Dupuis,et al.  Importance Sampling for Weighted-Serve-the-Longest-Queue , 2009, Math. Oper. Res..

[69]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[70]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[71]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[72]  Dirk P. Kroese,et al.  Efficient Estimation of Overflow Probabilities in Queues with Breakdowns , 1998, Perform. Evaluation.

[73]  Samy Bengio,et al.  Adversarial examples in the physical world , 2016, ICLR.

[74]  Enkelejd Hashorva,et al.  On multivariate Gaussian tails , 2003 .

[75]  S. Asmussen,et al.  Simulation of Ruin Probabilities for Subexponential Claims , 1997, ASTIN Bulletin.

[76]  Homayoun Najjaran,et al.  Autonomous vehicle perception: The technology of today and tomorrow , 2018 .

[77]  J. Carson Simulation and the Monte Carlo Method , 1982 .

[78]  Russ Tedrake,et al.  Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation , 2018, NeurIPS.

[79]  Konstantinos Spiliopoulos,et al.  Importance Sampling for Multiscale Diffusions , 2011, Multiscale Model. Simul..

[80]  Paul Glasserman,et al.  Fast Simulation of Multifactor Portfolio Credit Risk , 2008, Oper. Res..

[81]  Ding Zhao,et al.  RARE-EVENT SIMULATION WITHOUT STRUCTURAL INFORMATION: A LEARNING-BASED APPROACH , 2018, 2018 Winter Simulation Conference (WSC).

[82]  P. Glasserman,et al.  A large deviations perspective on the efficiency of multilevel splitting , 1998, IEEE Trans. Autom. Control..

[83]  Zdravko I. Botev,et al.  Sampling Conditionally on a Rare Event via Generalized Splitting , 2020, INFORMS J. Comput..

[84]  Petr Savický,et al.  Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope , 2004 .

[85]  Dirk P. Kroese,et al.  Improved algorithms for rare event simulation with heavy tails , 2006, Advances in Applied Probability.

[86]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[87]  Jean C. Walrand,et al.  Effective bandwidths for multiclass Markov fluids and other ATM sources , 1993, TNET.

[88]  E. Vanden-Eijnden,et al.  Rare Event Simulation of Small Noise Diffusions , 2012 .

[89]  Philip Heidelberger,et al.  Fast Simulation of Highly Dependable Systems with General Failure and Repair Processes , 1993, IEEE Trans. Computers.

[90]  Raghu Pasupathy,et al.  Dominating Points of Gaussian Extremes , 2018, 1810.12132.

[91]  Kyoung-Kuk Kim,et al.  Efficient Simulation for Expectations over the Union of Half-Spaces , 2018, ACM Trans. Model. Comput. Simul..

[92]  Bruno Tuffin On numerical problems in simulations of highly reliable Markovian systems , 2004 .

[93]  Xinming Huang,et al.  End-to-end learning for lane keeping of self-driving cars , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[94]  Russ Tedrake,et al.  Verifying Neural Networks with Mixed Integer Programming , 2017, ArXiv.

[95]  Philip Heidelberger,et al.  Fast simulation of rare events in queueing and reliability models , 1993, TOMC.

[96]  Dirk P. Kroese,et al.  Improved cross-entropy method for estimation , 2011, Statistics and Computing.

[97]  Petr Savický,et al.  Softening Splits in Decision Trees Using Simulated Annealing , 2007, ICANNGA.

[98]  Ad Ridder,et al.  Importance sampling algorithms for first passage time probabilities in the infinite server queue , 2009, Eur. J. Oper. Res..

[99]  Nidhi Kalra,et al.  Driving to Safety , 2016 .