High-speed low-chirp semiconductor lasers

Publisher Summary The use of quantum wells and quantum dots for the active region of lasers leads to lower induced chirp when they are directly modulated, permitting direct laser modulation that can save the cost of separate external modulators. This chapter provides a comparison of InAlGaAs with InGaAsP long-wavelength quantum-well lasers in terms of high-speed performance and extraction of important parameters such as gain, differential gain, photon lifetime, temperature dependence, and chirp. DC characteristics and high-speed direct modulation of quantum-well lasers are presented with a comparison among theoretical models. Insights into novel quantum-dot lasers for high-speed operation provide a comparison between p-type doping and tunneling injection for broadband operation. In the optical component market for telecom and datacom applications, cost reduction is a driving force for technology innovations. As a result, directly modulated semiconductor lasers operating in multi-Gb/s optical communication systems have become the technology of choice for local area and metropolitan networks. They reduce component complexity and implementation cost, eliminating the need for a modulator.

[1]  A. Stintz,et al.  Gain and linewidth enhancement factor in InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[2]  J. Laskar,et al.  In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties , 1999 .

[3]  Shun Lien Chuang,et al.  Intraband relaxation time effects on non-Markovian gain with many-body effects and comparison with experiment , 2000 .

[4]  L. F. Tiemeijer,et al.  Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers , 1994 .

[5]  Russell D. Dupuis,et al.  Room-temperature continuous photopumped laser operation of coupled InP quantum dot and InGaP quantum well InP–InGaP–In(AlGa)P–InAlP heterostructures , 2001 .

[6]  T. Chung,et al.  High-gain coupled InGaAs quantum well InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure diode laser operation , 2002 .

[7]  Yuzo Yoshikuni,et al.  Reduction of linewidth enhancement factor in InGaAsP-InP modulation-doped strained multiple-quantum-well lasers , 1993 .

[8]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[9]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[10]  M. Allovon,et al.  Interest in AlGaInAs on InP for optoelectronic applications , 1992 .

[11]  P. Bhattacharya,et al.  Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature , 2002 .

[12]  Jasprit Singh,et al.  SMALL-SIGNAL MODULATION AND DIFFERENTIAL GAIN OF SINGLE-MODE SELF-ORGANIZED IN0.4GA0.6AS/GAAS QUANTUM DOT LASERS , 1997 .

[13]  Scott W. Corzine,et al.  Effects of carrier transport on high‐speed quantum well lasers , 1991 .

[14]  P. Bhattacharya,et al.  Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature , 2002 .

[15]  Stephan W Koch,et al.  Semiconductor-Laser Physics , 1994 .

[16]  Karl Hess,et al.  Temperature dependence of electrical and optical modulation responses of quantum-well lasers , 1999 .

[17]  Jen-Inn Chyi,et al.  Theoretical Study of the Temperature Dependence of 1.3-pm AlGaInAs-InP Multiple-Quantum-Well Lasers , 1996 .

[18]  R. Olshansky,et al.  Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources , 1984 .

[19]  Shun Lien Chuang,et al.  Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers , 2006, IEEE Journal of Quantum Electronics.

[20]  J. Barrau,et al.  Theoretical comparison of GaInAs/GaAlInAs and GaInAs/GaInAsP quantum‐well lasers , 1995 .

[21]  T. Chung,et al.  Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs–GaAs–InGaAs–InAs heterostructure laser , 2001 .

[22]  Yoh Ogawa,et al.  Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers , 1998 .

[23]  P. K. Kondratko,et al.  Observations of near-zero linewidth enhancement factor in a quantum-well coupled quantum-dot laser , 2003 .

[24]  J. Schlafer,et al.  Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 mu m compressively strained semiconductor lasers , 1993 .

[25]  Shun Lien Chuang,et al.  Efficient quantum well to quantum dot tunneling: Analytical solutions , 2002 .

[26]  Eoin P. O'Reilly,et al.  Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers , 1993 .

[27]  Serge Luryi,et al.  Tunneling-injection quantum-dot laser: ultrahigh temperature stability , 2001 .

[28]  T. Chung,et al.  Coupled-stripe quantum-well-assisted AlGaAs–GaAs–InGaAs–InAs quantum-dot laser , 2002 .

[29]  Rajaram Bhat,et al.  High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-x-y/As/InP strained-layer quantum-well lasers for subscriber loop applications , 1994 .

[30]  Karl Hess,et al.  Theoretical analysis of gain saturation coefficients in InGaAs/AlGaAs strained layer quantum well lasers , 1992 .

[31]  Yuzo Yoshikuni,et al.  Theoretical study on enhanced differential gain and extremely reduced linewidth enhancement factor in quantum-well lasers , 1993 .

[32]  Rajaram Bhat,et al.  Measurement of nonradiative Auger and radiative recombination rates in strained‐layer quantum‐well systems , 1993 .

[33]  S. L. Chuang,et al.  High-speed modulation of long-wavelength In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As strained quantum-well lasers , 2001 .

[34]  N. Holonyak,et al.  Gain narrowing and output behavior of InP-InGaAlP tunneling injection quantum-dot-well laser , 2005, IEEE Photonics Technology Letters.

[35]  L. F. Tiemeijer,et al.  High-performance 1.5 mu m wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers , 1991 .

[36]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[37]  G. Liu,et al.  Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique , 2001, IEEE Photonics Technology Letters.

[38]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[39]  E. Omura,et al.  120/spl deg/C uncooled operation of direct modulated 1.3/spl mu/m AlGaInAs-MQW DFB laser diodes for 10Gb/s telecom applications , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[40]  S. Weisser,et al.  Differential gain, refractive index, and linewidth enhancement factor in high-speed GaAs-based MQW lasers: influence of strain and p-doping , 1994, IEEE Photonics Technology Letters.

[41]  Shun Lien Chuang,et al.  Amplified spontaneous emission spectroscopy in strained quantum-well lasers , 1995 .

[42]  John E. Bowers,et al.  Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well , 1994 .

[43]  S. Arai,et al.  Theoretical linewidth enhancement factor alpha of Ga/sub 1-x/In/sub x/As/GaInAsP/InP strained-quantum-well structures , 1993, IEEE Photonics Technology Letters.

[44]  P.J.A. Thijs,et al.  The effect of temperature dependent processes on the performance of 1.5-μm compressively strained InGaAs(P) MQW semiconductor diode lasers , 1998, IEEE Photonics Technology Letters.

[45]  Yuzo Yoshikuni,et al.  Linewidth enhancement factor in InGaAsP/lnP modulation-doped strained multiple-quantum-well lasers , 1994 .

[46]  Russell D. Dupuis,et al.  Properties of InP self-assembled quantum dots embedded in In0.49(AlxGa1−x)0.51P for visible light emitting laser applications grown by metalorganic chemical vapor deposition , 2002 .

[47]  Dennis G. Deppe,et al.  The role of p-type doping and the density of states on the modulation response of quantum dot lasers , 2002 .