Assessing spatial patterns of forest fuel using AVIRIS data

[1]  Narasimhan Larkin,et al.  Final Report to the Joint Fire Science Program Project 04-2-1-71 Project Title: Quality Assurance of Weather Data and the Probability of Favorable Weather for Prescribed Fire in Alaska. , 2007 .

[2]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[3]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[4]  J. Pierce,et al.  Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests , 2004, Nature.

[5]  W. Covington,et al.  Toward reference conditions: wildfire effects on flora in an old-growth ponderosa pine forest , 2004 .

[6]  J. W. Wagtendonk,et al.  Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity , 2004 .

[7]  W. Romme,et al.  The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests , 2004 .

[8]  D. Roberts,et al.  Using Imaging Spectroscopy to Study Ecosystem Processes and Properties , 2004 .

[9]  E. Mills,et al.  The Impact of Climate Change on Wildfire Severity: A Regional Forecast for Northern California , 2004 .

[10]  Carol Miller,et al.  Connectivity of forest fuels and surface fire regimes , 2000, Landscape Ecology.

[11]  T. Brown,et al.  The Impact of Twenty-First Century Climate Change on Wildland Fire Danger in the Western United States: An Applications Perspective , 2004 .

[12]  Dar A. Roberts,et al.  Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index , 2003 .

[13]  Gregory Asner,et al.  Imaging spectroscopy for desertification studies: comparing AVIRIS and EO-1 Hyperion in Argentina drylands , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Zheng Qu,et al.  HATCH: results from simulated radiances, AVIRIS and Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  Susan L. Ustin,et al.  Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[17]  Kathleen A. Dwire,et al.  Fire and riparian ecosystems in landscapes of the western USA , 2003 .

[18]  M. Kaufmann,et al.  Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range , 2003 .

[19]  B. Law,et al.  Changes in carbon storage and fluxes in a chronosequence of ponderosa pine , 2003 .

[20]  R. Clark,et al.  Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data , 2003 .

[21]  Russell T. Graham,et al.  Hayman Fire Case Study , 2003 .

[22]  D. Roy,et al.  The MODIS fire products , 2002 .

[23]  Erik J. Martinson,et al.  Effects of fuels treatment on wildfire severity , 2002 .

[24]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[25]  M. Kaufmann,et al.  Cheesman Lake-a historical ponderosa pine landscape guiding restoration in the South Platte Watershed of the Colorado Front Range , 2001 .

[26]  T. Kitzberger,et al.  Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. , 2000 .

[27]  Robin Wall Kimmerer,et al.  Native knowledge for native ecosystems. , 2000 .

[28]  A. Lynch,et al.  Impacts of Fire and Warming on Ecosystem Uptake in the Boreal Forest , 2000 .

[29]  Frank Sapio,et al.  Remote sensing and forestry: collaborative implementation for a new century of forest information solutions. , 2000 .

[30]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[31]  Gregory Asner,et al.  Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[32]  M. Kaufmann,et al.  Ponderosa pine in the Colorado Front Range: long historical fire and tree recruitment intervals and a case for landscape heterogeneity , 2000 .

[33]  Keeley,et al.  Reexamining fire suppression impacts on brushland fire regimes , 1999, Science.

[34]  Gregory P. Asner,et al.  Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling , 1998 .

[35]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[36]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[37]  Thomas T. Veblen,et al.  Disturbance and climatic influences on age structure of ponderosa pine at the pine/grassland ecotone, Colorado Front Range , 1998 .

[38]  R. Burgan,et al.  Fuel Models and Fire Potential From Satellite and Surface Observations , 1998 .

[39]  J. Bruce Impact of climate change , 1995, Nature.

[40]  D. Roberts,et al.  Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data , 1993 .

[41]  W. Baker EFFECTS OF SETTLEMENT AND FIRE SUPPRESSION ON LANDSCAPE STRUCTURE , 1992 .

[42]  Robert E. Keane,et al.  Simulating Cumulative Fire Effects in Ponderosa Pine/Douglas-Fir Forests , 1990 .

[43]  James K. Brown,et al.  Handbook for inventorying surface fuels and biomass in the interior West. General technical report , 1982 .

[44]  W. Romme,et al.  FIRE AND LANDSCAPE DIVERSITY IN SUBALPINE FORESTS OF YELLOWSTONE NATIONAL PARK , 1982 .

[45]  T. J. S toh lgren,et al.  A Modified-Whittaker nested vegetation sampling method , 2022 .