Component Analysis for Structural Equation Models with Concomitant Indicators

A new approach to structural equation modelling based on so-called Extended Redundancy Analysis has been recently proposed in literature, enhanced with the added characteristic of generalizing Redundancy Analysis and Reduced-Rank Regression models for more than two blocks. However, in presence of direct effects linking exogenous and endogenous variables, the latent composite scores are estimated by ignoring the presence of the specified direct effects. In this paper, we extend Extended Redundancy Analysis, permitting us to specify and fit a variety of relationships among latent composites and endogenous variables. In particular, covariates are allowed to affect endogenous indicators indirectly through the latent composites and/or directly.

[1]  P. Prescott Estimation of the standard deviation of a normal population from doubly censored samples using normal scores , 1970 .

[2]  Irini Moustaki,et al.  A general class of latent variable models for ordinal manifest variables with covariate effects on the manifest and latent variables. , 2003, The British journal of mathematical and statistical psychology.

[3]  T. Berge Least squares optimization in multivariate analysis , 2005 .

[4]  James H. Steiger,et al.  REGRESSION COMPONENT ANALYSIS , 1976 .

[5]  R. D. Bock,et al.  Analysis of covariance structures , 1966, Psychometrika.

[6]  Roger E. Millsap,et al.  Component analysis in cross-sectional and longitudinal data , 1988 .

[7]  Neil H. Timm,et al.  Multivariate Reduced-Rank Regression , 1999, Technometrics.

[8]  Mostafa El Qannari,et al.  From Multiblock Partial Least Squares to Multiblock Redundancy Analysis. A Continuum Approach , 2011, Informatica.

[9]  Yoshio Takane,et al.  The analysis of multitrait-multimethod matrices via constrained components analysis , 1996 .

[10]  P. G. Lovaglio,et al.  Structural Equation Models in a Redundancy Analysis Framework With Covariates , 2014, Multivariate behavioral research.

[11]  Donald M. Baer,et al.  A Component Analysis , 1977 .

[12]  Heungsun Hwang,et al.  An extended redundancy analysis and its applications to two practical examples , 2005, Comput. Stat. Data Anal..

[13]  A. Boomsma,et al.  The robustness of LISREL modeling revisted. , 2001 .

[14]  K. Jöreskog,et al.  Factor Models for Ordinal Variables With Covariate Effects on the Manifest and Latent Variables: A Comparison of LISREL and IRT Approaches , 2004 .

[15]  Herman Wold,et al.  Systems under indirect observation : causality, structure, prediction , 1982 .

[16]  P. T. Davies,et al.  Procedures for Reduced‐Rank Regression , 1982 .

[17]  Herman Wold,et al.  Soft modelling: The Basic Design and Some Extensions , 1982 .

[18]  A. L. V. D. Wollenberg Redundancy analysis an alternative for canonical correlation analysis , 1977 .

[19]  G. Vittadini Indeterminacy Problems in the Lisrel Model. , 1989, Multivariate behavioral research.

[20]  K. Jöreskog A general method for analysis of covariance structures , 1970 .

[21]  Wynne W. Chin,et al.  On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution , 1995 .

[22]  G. Reinsel,et al.  Multivariate Reduced-Rank Regression: Theory and Applications , 1998 .

[23]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .

[24]  P. Garthwaite An Interpretation of Partial Least Squares , 1994 .

[25]  Giorgio Vittadini,et al.  On the relationships among latent variables and residuals in PLS path modeling: The formative-reflective scheme , 2007, Comput. Stat. Data Anal..

[26]  R. P. McDonald,et al.  Path Analysis with Composite Variables. , 1996, Multivariate behavioral research.