Mechanical properties of highly textured Cu/Ni multilayers

Abstract We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h , varying from 1 to 200 nm. When, h , decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h . Hardnesses of multilayer films increase with decreasing h , approach a maximum at h of a few nanometers, and show softening thereafter at smaller h . The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.

[1]  L. Murr Interfacial phenomena in metals and alloys , 1975 .

[2]  P. Anderson,et al.  Estimates of interfacial properties in Cu/Ni multilayer thin films using hardness data , 2010 .

[3]  Richard G. Hoagland,et al.  On the strengthening effects of interfaces in multilayer fee metallic composites , 2002 .

[4]  D. Bacon,et al.  On the anisotropic elastic field of a dislocation segment in three dimensions , 1979 .

[5]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[6]  P. Anderson,et al.  Hall-Petch relations for multilayered materials , 1995 .

[7]  J. Hirth,et al.  Interface dislocation structures at the onset of coherency loss in nanoscale Ni–Cu bilayer films , 2005 .

[8]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[9]  J. Bean,et al.  Misfit dislocations in lattice-mismatched epitaxial films , 1992 .

[10]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[11]  B. Shoykhet,et al.  Internal stresses and strains in coherent multilayers , 1998 .

[12]  R. Cammarata Mechanical properties of nanocomposite thin films , 1994 .

[13]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[14]  Nan Li,et al.  Mechanical properties of sputtered Cu/V and Al/Nb multilayer films , 2008 .

[15]  Masahiko Tani,et al.  Introduction to Terahertz Pulses , 2005 .

[16]  A. Sergueeva,et al.  Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials , 2004 .

[17]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[18]  J. Pethica,et al.  Tip Surface Interactions in STM and AFM , 1987 .

[19]  J. Hirth,et al.  Influence of surface steps on glide of threading dislocations during layer growth , 2004 .

[20]  Schuller,et al.  Structural refinement of superlattices from x-ray diffraction. , 1992, Physical review. B, Condensed matter.

[21]  D. Tabor Hardness of Metals , 1937, Nature.

[22]  H. W. Liu,et al.  The equivalence between dislocation pile-ups and cracks , 1990 .

[23]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[24]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[25]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[26]  I. Schuller New class of layered materials , 1980 .

[27]  S. Barnett,et al.  Model of superlattice yield stress and hardness enhancements , 1995 .

[28]  J. Embury,et al.  Modeling the formation of twins and stacking faults in the Ag-Cu system , 2001 .

[29]  R. Hoagland,et al.  Nanoscale growth twins in sputtered metal films , 2008 .

[30]  P. Anderson,et al.  Dislocation-Based Deformation Mechanisms in Metallic Nanolaminates , 1999 .

[31]  M. Anglada,et al.  Contact Deformation Regimes Around Sharp Indentations and the Concept of the Characteristic Strain , 2002 .

[32]  M. Nastasi,et al.  Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning , 2004 .

[33]  A. Jankowski Metallic multilayers at the nanoscale , 1994 .

[34]  Tong-Yi Zhang,et al.  Strain relaxation in heteroepitaxial films by misfit twinning. I. Critical thickness , 2007 .

[35]  A. Misra,et al.  Deformation Behavior of Nanostructured Metallic Multilayers , 2001 .

[36]  Ng M.‐F.,et al.  ポリ(9,9‐ジオクチルフルオレン)オリゴマとポリ(p‐フェニレンビニレン)オリゴマの光学的性質の比較 , 2005 .

[37]  Amit Misra,et al.  Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites , 1998 .

[38]  S. Lehoczky Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates , 1978 .

[39]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[40]  S. Lehoczky,et al.  Strength enhancement in thin‐layered Al‐Cu laminates , 1978 .

[41]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[42]  D. Lashmore,et al.  Mechanical behavior of compositionallty modulated alloys , 1992 .

[43]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[44]  M. Nastasi,et al.  Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films , 2004 .