Behaviour of the lockbolt demountable shear connector under combined shear and tension loading

[1]  Shun‐Peng Zhu,et al.  Multiaxial fatigue under variable amplitude loadings: review and solutions , 2022, International Journal of Structural Integrity.

[2]  Ahmed S. H. Suwaed,et al.  Experimental and Numerical Evaluation of a Welded Demountable Shear Connector through Horizontal Pushout Tests , 2022, Journal of Structural Engineering.

[3]  Xintian Liu,et al.  Evaluation and prediction of material fatigue characteristics under impact loads: review and prospects , 2022, International Journal of Structural Integrity.

[4]  Ahmed S. H. Suwaed,et al.  Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector , 2022, Structures.

[5]  H. Xin,et al.  Fracture simulation of a demountable steel-concrete bolted connector in push-out tests , 2021, Engineering Structures.

[6]  Jun He,et al.  Circular perforated steel yielding demountable shear connector for sustainable precast composite floors , 2021 .

[7]  Shun‐Peng Zhu,et al.  Probabilistic fatigue assessment of notched components under size effect using critical distance theory , 2020 .

[8]  Ahmed S. H. Suwaed,et al.  Demountable steel-concrete composite beam with full-interaction and low degree of shear connection , 2020 .

[9]  H. Xin,et al.  Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders , 2020 .

[10]  Jun He,et al.  Steel-Yielding Demountable Shear Connector for Composite Floors with Precast Hollow-Core Slab Units , 2019, Journal of Structural Engineering.

[11]  Ee Loon Tan,et al.  Experimental study on demountable steel-concrete connectors subjected to combined shear and tension , 2019, Engineering Structures.

[12]  Milan Veljkovic,et al.  Elastic behaviour of a tapered steel-concrete composite beam optimized for reuse , 2019, Engineering Structures.

[13]  C. Castiglioni,et al.  Environmental benefits arising from demountable steel-concrete composite floor systems in buildings , 2019, Resources, Conservation and Recycling.

[14]  C. Odenbreit,et al.  Push-out tests on demountable shear connectors of steel-concrete composite structures , 2018, Structures.

[15]  Theodore L. Karavasilis,et al.  Removable shear connector for steel-concrete composite bridges , 2018 .

[16]  H. Xin,et al.  Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests , 2018 .

[17]  Theodore L. Karavasilis,et al.  Novel Demountable Shear Connector for Accelerated Disassembly, Repair, or Replacement of Precast Steel-Concrete Composite Bridges , 2017 .

[18]  Xinqun Zhu,et al.  Bolted and welded connectors for the rehabilitation of composite beams , 2016 .

[19]  A. Ashour,et al.  Experimental study on demountable shear connectors in composite slabs with profiled decking , 2016 .

[20]  Mark A. Bradford,et al.  Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors , 2016 .

[21]  Xianghe Dai,et al.  Effect of Concrete Strength and Stud Collar Size to Shear Capacity of Demountable Shear Connectors , 2015 .

[22]  J. Y. Richard Liew,et al.  SHEAR-TENSION INTERACTION STRENGTH OF J-HOOK CONNECTORS IN STEEL-CONCRETE-STEEL SANDWICH STRUCTURE , 2015 .

[23]  Jun He,et al.  Behavior of stud connectors under combined shear and tension loads , 2014 .

[24]  Jun He,et al.  Experimental Study of the Steel-Concrete Connection in Hybrid Cable-Stayed Bridges , 2014 .

[25]  Teruhiko Yoda,et al.  Mechanical Performance of Steel-Concrete Composite Beams Subjected to a Hogging Moment , 2014 .

[26]  Zhen Yu,et al.  Static behavior of multi-stud shear connectors for steel-concrete composite bridge , 2012 .

[27]  Dennis Lam,et al.  Shear Capacity of Demountable Shear Connectors , 2012 .

[28]  Michael D. Engelhardt,et al.  Behavior of post-installed shear connectors under static and fatigue loading , 2010 .

[29]  Jerome F. Hajjar,et al.  Headed steel stud anchors in composite structures, Part II: Tension and interaction , 2010 .

[30]  Jerome F. Hajjar,et al.  Headed steel stud anchors in composite structures, Part I: Shear , 2010 .

[31]  Yuqing Liu,et al.  Experimental study on inelastic mechanical behaviour of composite girders under hogging moment , 2010 .

[32]  Brian Uy,et al.  Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors , 2010 .

[33]  D. Lam,et al.  Behavior of Headed Stud Shear Connectors in Composite Beam , 2005 .

[34]  H. L. Graves,et al.  Breakout Capacity of Anchors in ConcretePart 1: Tension , 2004 .

[35]  Jerome F. Hajjar,et al.  Behavior of shear studs in steel frames with reinforced concrete infill walls , 2004 .

[36]  Rolf Eligehausen,et al.  CONCRETE CAPACITY DESIGN (CCD) APPROACH FOR FASTENING TO CONCRETE , 1995 .

[37]  H. Bode,et al.  Headed Studs--Embedded in Concrete and Loaded in Tension , 1987, SP-103: Anchorage to Concrete.

[38]  F. Wayne Klaiber,et al.  High-Strength Bolts as Shear Connectors in Rehabilitation Work , 1984 .

[39]  W T Marshall,et al.  AN EXPERIMENT STUDY OF THE USE OF HIGH-STRENGTH FRICTION GRIP BOLTS AS SHEAR CONNECTORS IN COMPOSITE BEAMS , 1971 .

[40]  L. Dallam,et al.  High Strength Bolt Shear Connectors -Pushout Tests , 1968 .