Metasurfaces in terahertz waveband

Metasurface, composed of subwavelength antennas, allows us to obtain arbitrary permittivity and permeability in electromagnetic (EM) waveband. It can be used to control the polarization, frequency, amplitude, and phase of the EM wave. Conventional terahertz (THz) components, such as high impedance silicon lens, polyethylene lens, and quartz wave plate, rely on the phase accumulation along the wave propagation to reshape the THz wave front. The metasurface employs the local resonance to modulate the wave front. Compared with the conventional THz components, metasurface has advantages of ultrathin, ultralight, and low cost. In recent years, a large number of THz devices based on metasurface have been proposed. We review a broad outline of the metasurface devices in the THz region and describe the progress of static and tunable THz field modulated metasurfaces in detail. Finally, we discuss current challenges and opportunities in this rapidly developing research field.

[1]  J. Muth,et al.  VO(2) based waveguide-mode plasmonic nano-gratings for optical switching. , 2015, Optics express.

[2]  Nevill Francis Mott,et al.  Metal-insulator transition in vanadium dioxide , 1975 .

[3]  Yingli Liu,et al.  Terahertz metamaterials with VO2 cut-wires for thermal tunability , 2010 .

[4]  Ru-Wen Peng,et al.  Metallic stereostructured layer: An approach for broadband polarization state manipulation , 2014 .

[5]  Sai Chen,et al.  State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping. , 2013, Optics letters.

[6]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[7]  J. Rivas,et al.  Photo-generated THz plasmonic waveguides , 2014 .

[8]  Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules , 2017 .

[9]  Chengkuo Lee,et al.  Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array , 2014, Light: Science & Applications.

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  Rachid Oussaid,et al.  Enhanced-transmission metamaterials as anisotropic plates , 2011 .

[12]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[13]  N. Kanda,et al.  All-photoinduced terahertz optical activity. , 2014, Optics letters.

[14]  Yan Zhang,et al.  Ultrafast terahertz response in photoexcited, vertically grown few-layer graphene , 2016 .

[15]  David R. Smith,et al.  Infrared metamaterial phase holograms. , 2012, Nature materials.

[16]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[17]  N. Kanda,et al.  Light-induced terahertz optical activity. , 2009, Optics letters.

[18]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[19]  Shan-Shan Jiang,et al.  Controlling the Polarization State of Light with a Dispersion-Free Metastructure , 2014 .

[20]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[21]  Xin Zhang,et al.  Comparison of birefringent metamaterials and meanderline structure as quarter-wave plates at terahertz frequencies , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[22]  Jingwen He,et al.  Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers. , 2015, Optics letters.

[23]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[24]  Yan Zhang,et al.  Ultrathin Metasurface Laser Beam Shaper , 2014 .

[25]  B Dong,et al.  General theory for performing an optical transform. , 1986, Applied optics.

[26]  Qiong He,et al.  A transparent metamaterial to manipulate electromagnetic wave polarizations. , 2011, Optics letters.

[27]  Qiang Kan,et al.  Generation and evolution of the terahertz vortex beam. , 2013, Optics express.

[28]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[29]  Abruptly autofocusing terahertz waves with meta-hologram. , 2016, Optics letters.

[30]  Koichiro Tanaka,et al.  Photo-designed terahertz devices , 2011, Scientific reports.

[31]  Qiang Kan,et al.  A broadband terahertz ultrathin multi-focus lens , 2016, Scientific Reports.

[32]  Miguel Beruete,et al.  Planar Holographic Metasurfaces for Terahertz Focusing , 2015, Scientific Reports.

[33]  Weiping Cai,et al.  Plasmonic holographic imaging with V-shaped nanoantenna array. , 2013, Optics express.

[34]  Masayoshi Tonouchi,et al.  Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators , 2013 .

[35]  Wen-feng Sun,et al.  Ultrathin Terahertz Planar Elements , 2012, 1206.7011.

[36]  Wen-feng Sun,et al.  Spin-selected focusing and imaging based on metasurface lens. , 2015, Optics express.

[37]  Haitao Liu,et al.  Broadband terahertz metamaterial absorber based on sectional asymmetric structures , 2016, Scientific Reports.

[38]  Yan Zhang,et al.  Micro-antennas for the phase and amplitude modulation of terahertz wave , 2015, Selected Proceedings from CSOE.

[39]  Xiewen Wen,et al.  Broadband THz reflective polarization rotator by multiple plasmon resonances. , 2014, Optics express.

[40]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[41]  Chao Zhang,et al.  Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam , 2014 .

[42]  Yuan Lin,et al.  A tunable hybrid metamaterial absorber based on vanadium oxide films , 2012 .

[43]  Fei Gao,et al.  Splashing transients of 2D plasmons launched by swift electrons , 2017, Science Advances.

[44]  J. J. Schermer,et al.  Photo-generated THz antennas , 2014, Scientific Reports.

[45]  Wenfeng Sun,et al.  Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate. , 2013, Optics letters.

[46]  H. Bernien,et al.  Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.

[47]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[48]  Xiao Lin,et al.  All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures , 2016, Proceedings of the National Academy of Sciences.

[49]  D. Veksler,et al.  Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible , 2008, 0801.3302.

[50]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[51]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[52]  Yan Zhang,et al.  Spatial Terahertz Modulator , 2013, Scientific Reports.

[53]  T. Cui,et al.  Optically controlled background-free terahertz switching in chiral metamaterial. , 2014, Optics letters.

[54]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[55]  M. Soljavci'c,et al.  Tailoring the energy distribution and loss of 2D plasmons , 2016, 1609.01794.

[56]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[57]  Y. P. Lee,et al.  THz-metamaterial absorbers , 2013 .

[58]  Yuan Lin,et al.  Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition , 2016, Plasmonics.

[59]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[60]  Timothy D Wilkinson,et al.  Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. , 2014, Nano letters.

[61]  Xin-Ke Wang,et al.  Wavelength de-multiplexing metasurface hologram , 2016, Scientific Reports.

[62]  Ziqiang Yang,et al.  Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method. , 2014, Optics express.

[63]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[64]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[65]  Zhen Tian,et al.  A Broadband Metasurface‐Based Terahertz Flat‐Lens Array , 2015 .

[66]  Qiang Cheng,et al.  Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. , 2017, Optics express.

[67]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[68]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[69]  Atomically thin nonreciprocal optical isolation , 2014, Scientific reports.

[70]  Igal Brener,et al.  Metamaterials for THz polarimetric devices. , 2009, Optics express.

[71]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[72]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[73]  Yan Zhang,et al.  Ultrahigh Q-factor and figure of merit Fano metamaterial based on dark ring magnetic mode , 2015 .

[74]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[75]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[76]  Federico Capasso,et al.  Nanostructured holograms for broadband manipulation of vector beams. , 2013, Nano letters.

[77]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[78]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[79]  Qi-Ye Wen,et al.  Graphene based All-Optical Spatial Terahertz Modulator , 2014, Scientific Reports.

[80]  Xin-Ke Wang,et al.  Reconfigurable terahertz grating with enhanced transmission of TE polarized light , 2017 .

[81]  Willie J Padilla,et al.  Complementary planar terahertz metamaterials. , 2007, Optics express.

[82]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[83]  Yan Zhang,et al.  High transmission of annular aperture arrays caused by symmetry breaking , 2012 .

[84]  Baile Zhang,et al.  Caustic graphene plasmons with Kelvin angle , 2015, 1505.02848.

[85]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[86]  Jingjing Zheng,et al.  Bandwidth broadening of a linear polarization converter by near-field metasurface coupling , 2017, Scientific Reports.

[87]  Sailing He,et al.  90° polarization rotator using a bilayered chiral metamaterial with giant optical activity , 2010 .

[88]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[89]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[90]  Willie J. Padilla,et al.  All-dielectric metasurface absorbers for uncooled terahertz imaging , 2017 .

[91]  Shi-ning Zhu,et al.  Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial , 2008 .

[92]  Active loaded plasmonic antennas at terahertz frequencies:Optical control of their capacitive-inductive coupling , 2015 .