Photonic Integration on the Hybrid Silicon Evanescent Device Platform

This paper reviews the recent progress of hybrid silicon evanescent devices. The hybrid silicon evanescent device structure consists of III-V epitaxial layers transferred to silicon waveguides through a low-temperature wafer bonding process to achieve optical gain, absorption, and modulation efficiently on a silicon photonics platform. The low-temperature wafer bonding process enables fusion of two different material systems without degradation of material quality and is scalable to wafer-level bonding. Lasers, amplifiers, photodetectors, and modulators have been demonstrated with this hybrid structure and integration of these individual components for improved optical functionality is also presented. This approach provides a unique way to build photonic active devices on silicon and should allow application of silicon photonic integrated circuits to optical telecommunication and optical interconnects.

[1]  U. Gösele,et al.  Semiconductor wafer bonding , 1998 .

[2]  Ying-Hao Kuo,et al.  A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. , 2007, Optics express.

[3]  Masataka Shirai,et al.  Advantages of optical modulators with InGaAlAs/InGaAlAs MQW structure , 2002 .

[4]  A. Scherer,et al.  Design and fabrication of silicon photonic crystal optical waveguides , 2000, Journal of Lightwave Technology.

[5]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[6]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[7]  Oded Cohen,et al.  Mode-locked silicon evanescent lasers. , 2007, Optics express.

[8]  M. Koga,et al.  Experimental investigation of injection locking of fundamental and subharmonic frequency-modulated active mode-locked laser diodes , 1998 .

[9]  T. Nagatsuma,et al.  110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-/spl mu/m wavelength , 1994, IEEE Photonics Technology Letters.

[10]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[11]  Xavier Le Roux,et al.  Optical modulation by carrier depletion in a silicon PIN diode. , 2006, Optics express.

[12]  Y. Liu,et al.  Growth of ultrathin SiO2 on Si by surface irradiation with an O2+Ar electron cyclotron resonance microwave plasma at low temperatures , 1999 .

[13]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[14]  H. Kuo,et al.  The carrier blocking effect on 850 nm InAlGaAs/AlGaAs vertical-cavity surface-emitting lasers , 2006 .

[15]  Wenhui Wang,et al.  Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating , 2005 .

[16]  Hyundai Park,et al.  All-Optical Clock Recovery with Retiming and Reshaping Using a Silicon Evanescent Mode Locked Ring Laser , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[17]  E. L. Portnoi,et al.  Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .

[18]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[19]  F. Coppinger,et al.  Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity , 1997, IEEE Photonics Technology Letters.

[20]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[21]  L. Coldren,et al.  Demonstration of widely tunable single-chip 10-Gb/s laser-modulators using multiple-bandgap InGaAsP quantum-well intermixing , 2004, IEEE Photonics Technology Letters.

[22]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[23]  S. Gee,et al.  Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications , 2006, Journal of Lightwave Technology.

[24]  F. Xia,et al.  Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. , 2007, Optics express.

[25]  J. Bowers,et al.  Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. , 2007, Optics express.

[26]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[27]  A. Splett,et al.  Integrated optoelectronic waveguide detectors in SiGe for optical communications , 1995, Optics & Photonics.

[28]  Klas Hjort,et al.  Plasma-assisted InP-to-Si low temperature wafer bonding , 2002 .

[29]  G. Masini,et al.  A Four-Channel, 10 Gbps Monolithic Optical Receiver In 130nm CMOS With Integrated Ge Waveguide Photodetectors , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[30]  J. Bowers,et al.  Hybrid Silicon Evanescent Laser in a Silicon-on-Insulator Waveguide , 2007, OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference.

[31]  Omri Raday,et al.  A hybrid AlGaInAs-silicon evanescent waveguide photodetector. , 2007, Optics express.

[32]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[33]  John E. Bowers,et al.  1310nm Silicon Evanescent Laser , 2007 .

[34]  Omri Raday,et al.  Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector , 2007, SPIE Optics East.

[35]  David A B Miller,et al.  Optical modulator on silicon employing germanium quantum wells. , 2007, Optics express.

[36]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[37]  Hyundai Park,et al.  A Hybrid AlGaInAs–Silicon Evanescent Amplifier , 2007, IEEE Photonics Technology Letters.

[38]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[39]  Zetian Mi,et al.  Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon , 2005 .

[40]  David F. Welch,et al.  Monolithic, 10 and 40 Channel InP Receiver Photonic Integrated Circuits with On-Chip Amplification , 2007, OFC 2007.

[41]  Alexander Fang,et al.  Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2005, Optics express.

[42]  G. Masini,et al.  A 1550nm, 10Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetector , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[43]  M. Tamura,et al.  Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s , 2006, Journal of Lightwave Technology.

[44]  Wei Jiang,et al.  80-micron interaction length silicon photonic crystal waveguide modulator , 2005 .