Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems
暂无分享,去创建一个
Matthias Morzfeld | Xuemin Tu | Alexandre J. Chorin | Fei Lu | A. Chorin | M. Morzfeld | F. Lu | Xuemin Tu
[1] Francis Comets,et al. Large Deviations and Applications , 2011, International Encyclopedia of Statistical Science.
[2] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[3] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[4] Andrew J. Majda,et al. Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities , 2013 .
[5] W. Schoutens. Stochastic processes and orthogonal polynomials , 2000 .
[6] A. Chorin,et al. Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.
[7] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[8] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[9] Panos G. Georgopoulos,et al. Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method , 2003 .
[10] Thomas Y. Hou,et al. Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics , 2006, J. Comput. Phys..
[11] E. Vanden-Eijnden,et al. Rare Event Simulation of Small Noise Diffusions , 2012 .
[12] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[13] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[14] Guo Ben-yu,et al. Hermite spectral and pseudospectral methods for nonlinear partial differential equation in multiple dimensions , 2003 .
[15] N. Zabaras,et al. Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective , 2013 .
[16] A. Chorin,et al. Stochastic Tools in Mathematics and Science , 2005 .
[17] A. Chorin,et al. Implicit Particle Methods and Their Connection with Variational Data Assimilation , 2012, 1205.1830.
[18] Matthias Morzfeld,et al. Parameter estimation by implicit sampling , 2013, 1308.4640.
[19] Khachik Sargsyan,et al. Uncertainty Quantification in MD Simulations. Part II: Bayesian Inference of Force-Field Parameters , 2012, Multiscale Model. Simul..
[20] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[21] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[22] A. Chorin. Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.
[23] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[24] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[25] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[26] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[27] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[28] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[29] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[30] E. Vanden-Eijnden,et al. Data Assimilation in the Low Noise Regime with Application to the Kuroshio , 2012, 1202.4952.
[31] Matthias Morzfeld,et al. Implicit particle filters for data assimilation , 2010, 1005.4002.
[32] G. H. Canavan,et al. Relationship between a Wiener–Hermite expansion and an energy cascade , 1970, Journal of Fluid Mechanics.