A comprehensive review of deterministic models and applications for mean-variance portfolio optimization

Abstract Portfolio optimization is the process of determining the best combination of securities and proportions with the aim of having less risk and obtaining more profit in an investment. Utilizing covariance as a risk measure, mean-variance portfolio optimization model has brought a revolutionary approach to quantitative finance. Since then, along with the advancements in computational power and algorithmic enhancements, a lot of efforts have been made on improving this model by considering real-life conditions and solving model variants with various methodologies tested on various data and performance measures. A comprehensive literature review of recent and novel papers is crucial to establish a pattern of the past, and to pave the way on future directions. In this paper, a total of 175 papers published in the last two decades are selected within the scope of operations research community and reviewed in detail. Thus, a comprehensive survey on the deterministic models and applications suggested for mean-variance portfolio optimization in which several variants of this model as well as additional real-life constraints are studied. The review classifies the approaches according to exact and approximate attempts and analyzes the proposed algorithms based on various data and performance indicators in depth. Areas of future research are outlined.

[1]  Can Berk Kalayci,et al.  An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization , 2017, Expert Syst. Appl..

[2]  Pedro Godinho,et al.  Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms and technical analysis rules , 2017, Expert Syst. Appl..

[3]  Inés María Galván,et al.  Time-stamped resampling for robust evolutionary portfolio optimization , 2012, Expert Syst. Appl..

[4]  Konstantinos P. Anagnostopoulos,et al.  Multiobjective evolutionary algorithms for complex portfolio optimization problems , 2011, Comput. Manag. Sci..

[5]  Alberto Ferreira de Souza,et al.  Prediction-based portfolio optimization model using neural networks , 2009, Neurocomputing.

[6]  Kwame Nkrumah,et al.  Pattern Search for Portfolio Selection , 2014 .

[7]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[8]  Asante Gyamerah Heuristic crossover for portfolio selection , 2014 .

[9]  Wei Chen,et al.  Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem , 2015 .

[10]  Yuqing Zhai,et al.  A novel PSO for portfolio optimization based on heterogeneous multiple population strategy , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[11]  Andreas Zell,et al.  Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem , 2004 .

[12]  Rong Qu,et al.  A hybrid algorithm for constrained portfolio selection problems , 2013, Applied Intelligence.

[13]  G. A. Vijayalakshmi Pai,et al.  Constrained portfolio rebalancing with transaction costs using Evolutionary Wavelet Hopfield Network Strategy , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[14]  Kalyanmoy Deb,et al.  Portfolio optimization with an envelope-based multi-objective evolutionary algorithm , 2009, Eur. J. Oper. Res..

[15]  Vitoantonio Bevilacqua,et al.  A Novel Multi Objective Genetic Algorithm for the Portfolio Optimization , 2011, ICIC.

[16]  Samira Kamali,et al.  Portfolio Optimization using Particle Swarm Optimization and Genetic Algorithm , 2014 .

[17]  Manoj Thakur,et al.  Genetic algorithm designed for solving portfolio optimization problems subjected to cardinality constraint , 2017, International Journal of System Assurance Engineering and Management.

[18]  Xiang Li,et al.  Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature , 2018, Fuzzy Optim. Decis. Mak..

[19]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[20]  Javier Oliver,et al.  Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics , 2017, Neural Computing and Applications.

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[22]  Xiao-Liang Shen,et al.  A new evolutionary algorithm based on MOEA/D for portfolio optimization , 2018, 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI).

[23]  Ruibin Bai,et al.  A combinatorial algorithm for the cardinality constrained portfolio optimization problem , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[24]  Yuqing Zhai,et al.  A Novel Particle Swarm Optimization for Portfolio Optimization Based on Random Population Topology Strategies , 2015, ICSI.

[25]  Weigang Jiang,et al.  A Particle Swarm Optimization Algorithm Based on Diffusion-Repulsion and Application to Portfolio Selection , 2008, 2008 International Symposium on Information Science and Engineering.

[26]  Kin Keung Lai,et al.  A model for portfolio selection with order of expected returns , 2000, Comput. Oper. Res..

[27]  Milan Tuba,et al.  Constrained Portfolio Optimization by Hybridized Bat Algorithm , 2016, 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS).

[28]  T. Larsson,et al.  Eigendecomposition of the mean-variance portfolio optimization model , 2015 .

[29]  Felix Streichert,et al.  The Effect of Local Search on the Constrained Portfolio Selection Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[30]  Ponnuthurai Nagaratnam Suganthan,et al.  Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods , 2017 .

[31]  Chieh-Yow Chianglin Applications of Genetic Algorithm to Portfolio Optimization with Practical Transaction Constraints , 2006, JCIS.

[32]  Andrea Schaerf,et al.  Local Search Techniques for Constrained Portfolio Selection Problems , 2001, ArXiv.

[33]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[34]  Wei Chen,et al.  Stochastic Portfolio Selection Based on Velocity Limited Particle Swarm Optimization , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[35]  Maria Grazia Speranza,et al.  Twenty years of linear programming based portfolio optimization , 2014, Eur. J. Oper. Res..

[36]  Adil Baykasoglu,et al.  A GRASP based solution approach to solve cardinality constrained portfolio optimization problems , 2015, Comput. Ind. Eng..

[37]  Jih-Jeng Huang,et al.  A novel hybrid model for portfolio selection , 2005, Appl. Math. Comput..

[38]  Rafal Drezewski,et al.  An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization , 2017, Symmetry.

[39]  Yves Crama,et al.  Simulated annealing for complex portfolio selection problems , 2003, Eur. J. Oper. Res..

[40]  M. Pant,et al.  Solving portfolio optimization problem through differential evolution , 2016, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).

[41]  Kalyanmoy Deb,et al.  Multi-objective Optimization , 2014 .

[42]  Mohammed Essaid Riffi,et al.  A comparative study on portfolio optimization problem , 2016, 2016 International Conference on Engineering & MIS (ICEMIS).

[43]  Milan Tuba,et al.  Fireworks algorithm applied to constrained portfolio optimization problem , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[44]  George Mavrotas,et al.  Multiobjective portfolio optimization with non-convex policy constraints: Evidence from the Eurostoxx 50 , 2014 .

[45]  G. A. Vijayalakshmi Pai,et al.  Fuzzy decision theory based optimization of constrained portfolios using metaheuristics , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[46]  Maleerat Sodanil,et al.  Cardinality-constrained Portfolio optimization using an improved quick Artificial Bee Colony Algorithm , 2016, 2016 International Computer Science and Engineering Conference (ICSEC).

[47]  A. Yoshimoto THE MEAN-VARIANCE APPROACH TO PORTFOLIO OPTIMIZATION SUBJECT TO TRANSACTION COSTS , 1996 .

[48]  Milan Tuba,et al.  Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint , 2014, TheScientificWorldJournal.

[49]  Ben Niu,et al.  Improved Particle Swarm Optimizers with Application on Constrained Portfolio Selection , 2010, ICIC.

[50]  K. K. Mishra,et al.  Portfolio optimization using novel co-variance guided Artificial Bee Colony algorithm , 2017, Swarm Evol. Comput..

[51]  Carlos Cotta,et al.  Evolutionary Optimization for Multiobjective Portfolio Selection under Markowitz's Model with Application to the Caracas Stock Exchange , 2009, Nature-Inspired Algorithms for Optimisation.

[52]  Wei-Guo Zhang,et al.  A multi-period fuzzy portfolio optimization model with minimum transaction lots , 2015, Eur. J. Oper. Res..

[53]  Maghsud Solimanpur,et al.  Solving multi-objective portfolio optimization problem using invasive weed optimization , 2016, Swarm Evol. Comput..

[54]  Liang Tao,et al.  Improved particle swarm algorithm for portfolio optimization problem , 2010, 2010 The 2nd International Conference on Industrial Mechatronics and Automation.

[55]  Caro Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[56]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[57]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[58]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[59]  Saeed Farzi,et al.  Using quantum-behaved particle swarm optimization for portfolio selection problem , 2013, Int. Arab J. Inf. Technol..

[60]  Luís N. Vicente,et al.  Efficient Cardinality/Mean-Variance Portfolios , 2013, System Modelling and Optimization.

[61]  Arash Talebi,et al.  Performance investigation and comparison of two evolutionary algorithms in portfolio optimization: Genetic and particle swarm optimization , 2010, 2010 2nd IEEE International Conference on Information and Financial Engineering.

[62]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[63]  Zhongfeng Qin,et al.  Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns , 2015, Eur. J. Oper. Res..

[64]  Giovanni Fasano,et al.  Particle Swarm Optimization with non-smooth penalty reformulation, for a complex portfolio selection problem , 2013, Appl. Math. Comput..

[65]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[66]  Fasheng Xu,et al.  Improved Particle Swarm Optimization for Realistic Portfolio Selection , 2007 .

[67]  Peter Winker,et al.  Robust portfolio optimization with a hybrid heuristic algorithm , 2012, Comput. Manag. Sci..

[68]  Hans Kellerer,et al.  Optimization of cardinality constrained portfolios with a hybrid local search algorithm , 2003, OR Spectr..

[69]  Hamid Reza Golmakani,et al.  Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm , 2009, Expert Syst. Appl..

[70]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[71]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[72]  Alberto Suárez,et al.  Use of heuristic rules in evolutionary methods for the selection of optimal investment portfolios , 2007, 2007 IEEE Congress on Evolutionary Computation.

[73]  Celso C. Ribeiro,et al.  Greedy Randomized Adaptive Search Procedures , 2003, Handbook of Metaheuristics.

[74]  Fuyong Lin,et al.  Modified Bacterial Foraging Optimization for Constrained Portfolio Optimization , 2013 .

[75]  Yun Chen,et al.  Swarm Intelligence Algorithms for Portfolio Optimization , 2010, ICSI.

[76]  Laura Calvet,et al.  Solving Realistic Portfolio Optimization Problems via Metaheuristics: A Survey and an Example , 2016, MS.

[77]  Antonin Ponsich,et al.  A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications , 2013, IEEE Transactions on Evolutionary Computation.

[78]  Jason A. D. Atkin,et al.  A Population-Based Incremental Learning Method for Constrained Portfolio Optimisation , 2014, 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[79]  Kostas S. Metaxiotis,et al.  A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem , 2018, Ann. Oper. Res..

[80]  Haruhiko Kimura,et al.  Improved particle swarm optimization and application to portfolio selection , 2007 .

[81]  Shu-Wei Hsu,et al.  The Construction of Stock_s Portfolios by Using Particle Swarm Optimization , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[82]  Francesco Cesarone,et al.  Linear vs. quadratic portfolio selection models with hard real-world constraints , 2015, Comput. Manag. Sci..

[83]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[84]  Jianyang Hu,et al.  Comparison of Portfolio Optimization Models with Real Features: An Empirical Study Based on Chinese Stock Market , 2010 .

[85]  K. P. Anagnostopoulos,et al.  A reactive greedy randomized adaptive search procedure for a mixed integer portfolio optimization problem , 2010 .

[86]  Abdullah Al Mamun,et al.  A realistic approach to evolutionary multiobjective portfolio optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[87]  Graham Kendall,et al.  A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization , 2014, Appl. Soft Comput..

[88]  Jun Zhang,et al.  An Estimation of Distribution Algorithm Based Portfolio Selection Approach , 2010, 2010 International Conference on Technologies and Applications of Artificial Intelligence.

[89]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[90]  Wei Chen,et al.  The admissible portfolio selection problem with transaction costs and an improved PSO algorithm , 2010 .

[91]  Kin Keung Lai,et al.  A Double-Stage Genetic Optimization Algorithm for Portfolio Selection , 2006, ICONIP.

[92]  Ganapati Panda,et al.  A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection , 2014, Swarm Evol. Comput..

[93]  Ben Niu,et al.  Symbiotic Multi-swarm PSO for Portfolio Optimization , 2009, ICIC.

[94]  Li Hui-min,et al.  Artificial bee colony algorithm for real estate portfolio optimization based on risk preference coefficient , 2010, 2010 International Conference on Management Science & Engineering 17th Annual Conference Proceedings.

[95]  Fouad Ben Abdelaziz,et al.  Decision-maker's preferences modeling in the stochastic goal programming , 2005, Eur. J. Oper. Res..

[96]  Konstantinos Liagkouras,et al.  A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem , 2014, Expert Syst. Appl..

[97]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[98]  N. Loukeris,et al.  A numerical evaluation of meta-heuristic techniques in portfolio optimisation , 2009, Oper. Res..

[99]  Konstantinos Liagkouras,et al.  A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem , 2019, Knowl. Based Syst..

[100]  Sajjad Haider,et al.  Comparison of AIS and PSO for Constrained Portfolio Optimization , 2009, 2009 International Conference on Information and Financial Engineering.

[101]  Eren Özceylan,et al.  Disassembly line balancing problem: a review of the state of the art and future directions , 2019, Int. J. Prod. Res..

[102]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[103]  Mohammad Mehdi Sepehri,et al.  Multi-objective portfolio optimization considering the dependence structure of asset returns , 2015, Eur. J. Oper. Res..

[104]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[105]  Yi Wang,et al.  Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem , 2011, Expert Syst. Appl..

[106]  Xiaoxia Huang,et al.  Multi-period mean-variance model with transaction cost for fuzzy portfolio selection , 2010, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery.

[107]  Milan Tuba,et al.  Upgraded Firefly Algorithm for Portfolio Optimization Problem , 2014, 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation.

[108]  Sang-Chin Yang,et al.  Portfolio optimization problems in different risk measures using genetic algorithm , 2009, Expert Syst. Appl..

[109]  Chih-Chung Lo,et al.  Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization , 2012, Expert Syst. Appl..

[110]  Jun Li,et al.  An improved multi-objective particle swarm optimization for constrained portfolio selection model , 2014, 2014 11th International Conference on Service Systems and Service Management (ICSSSM).

[111]  Asif Ekbal,et al.  Bi-objective portfolio optimization using Archive Multi-objective Simulated Annealing , 2014, 2014 International Conference on High Performance Computing and Applications (ICHPCA).

[112]  Jianhua Zheng,et al.  Multi-objective Scatter Search with External Archive for Portfolio Optimization , 2013, IJCCI.

[113]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[114]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[115]  Frank J. Fabozzi,et al.  60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..

[116]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[117]  Giovanni Fasano,et al.  Portfolio selection with an alternative measure of risk: Computational performances of particle swarm optimization and genetic algorithms , 2012 .

[118]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[119]  Roshan A. Shaikh,et al.  Genetic Algorithm and MS Solver for Portfolio Optimization under Exogenous Influence , 2009, 2009 Second International Conference on Computer and Electrical Engineering.

[120]  Ganapati Panda,et al.  Multi-objective particle swarm optimization approach to portfolio optimization , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[121]  Xiang Li,et al.  A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns , 2009, J. Comput. Appl. Math..

[122]  Pinar Çivicioglu,et al.  Artificial cooperative search algorithm for numerical optimization problems , 2013, Inf. Sci..

[123]  Shucheng Liu,et al.  Lagrangian relaxation procedure for cardinality-constrained portfolio optimization , 2008, Optim. Methods Softw..

[124]  S. S. Zhu,et al.  Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems , 2012, Journal of Global Optimization.

[125]  Shu-Cherng Fang,et al.  Cardinality constrained portfolio selection problem: A completely positive programming approach , 2015 .

[126]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[127]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[128]  Xiaoli Wang,et al.  Improved portfolio optimization with non-convex and non-concave cost using genetic algorithms , 2013, Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC).

[129]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[130]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[131]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[132]  Ximin Rong,et al.  Multi-period model of portfolio investment and adjustment based on hybrid genetic algorithm , 2009 .

[133]  Wei Chen,et al.  Particle Swarm Optimization for Constrained Portfolio Selection Problems , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[134]  Fang-Fang Hao,et al.  Mean-variance models for portfolio selection with fuzzy random returns , 2009 .

[135]  Keshav P. Dahal,et al.  Portfolio optimization using multi-obj ective genetic algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[136]  Jianwei Gao,et al.  An Improved Particle Swarm Optimization for the Constrained Portfolio Selection Problem , 2009, 2009 International Conference on Computational Intelligence and Natural Computing.

[137]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[138]  Francesco Cesarone,et al.  A new method for mean-variance portfolio optimization with cardinality constraints , 2013, Ann. Oper. Res..

[139]  Yun-Chia Liang,et al.  An artificial bee colony algorithm for the cardinality-constrained portfolio optimization problems , 2012, 2012 IEEE Congress on Evolutionary Computation.

[140]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[141]  Chen Chen,et al.  Robust multiobjective portfolio with higher moments , 2018, Expert Syst. Appl..

[142]  Yuqing Zhai,et al.  Particle swarm optimization with dynamic random population topology strategies for a generalized portfolio selection problem , 2016, Natural Computing.

[143]  Hang Xu,et al.  The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm , 2017, Applied Intelligence.

[144]  Jonathan E. Fieldsend,et al.  Cardinality Constrained Portfolio Optimisation , 2004, IDEAL.

[145]  G. A. Vijayalakshmi Pai,et al.  Evolutionary Optimization of Constrained $k$-Means Clustered Assets for Diversification in Small Portfolios , 2009, IEEE Transactions on Evolutionary Computation.

[146]  Konstantinos Liagkouras,et al.  Handling the complexities of the multi-constrained portfolio optimization problem with the support of a novel MOEA , 2018, J. Oper. Res. Soc..

[147]  Tunchan Cura,et al.  Particle swarm optimization approach to portfolio optimization , 2009 .

[148]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[149]  Y. Arkeman,et al.  The Formation of Optimal Portfolio of Mutual Shares Funds using Multi-Objective Genetic Algorithm , 2013 .

[150]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[151]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[152]  Sergio Gómez,et al.  Portfolio selection using neural networks , 2005, Comput. Oper. Res..

[153]  Weijun Xu,et al.  Possibilistic Approaches to Portfolio Selection Problem with General Transaction Costs and a CLPSO Algorithm , 2010 .

[154]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[155]  Fang He,et al.  Hybridising Local Search With Branch-And-Bound For Constrained Portfolio Selection Problems , 2016, ECMS.

[156]  Yucheng Kao,et al.  Bacterial Foraging Optimization Approach to Portfolio Optimization , 2013 .

[157]  Hamid Reza Golmakani,et al.  Portfolio selection using an artificial immune system , 2008, IRI.

[158]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Hitoshi Iba,et al.  The Memetic Tree-based Genetic Algorithm and its application to Portfolio Optimization , 2009, Memetic Comput..

[160]  Bart L. MacCarthy,et al.  Mean-VaR portfolio optimization: A nonparametric approach , 2017, Eur. J. Oper. Res..

[161]  Woo-Tsong Lin,et al.  Swarm Intelligence for Cardinality-Constrained Portfolio Problems , 2010, ICCCI.

[162]  Andrew E. B. Lim,et al.  Machine Learning and Portfolio Optimization , 2018, Manag. Sci..

[163]  Genshiro Kitagawa,et al.  A new optimal portfolio selection strategy based on a quadratic form mean–variance model with transaction costs , 2011 .

[164]  Hamid Reza Golmakani,et al.  Constrained Portfolio Selection using Particle Swarm Optimization , 2011, Expert Syst. Appl..

[165]  Ying Tan,et al.  Fireworks Algorithm for Optimization , 2010, ICSI.

[166]  Nasser R. Sabar,et al.  Dual Population Genetic Algorithm for the Cardinality Constrained Portfolio Selection Problem , 2014, SEAL.

[167]  M. Rubinstein. Markowitz's "Portfolio Selection": A Fifty-Year Retrospective , 2002 .

[168]  Xiaoxia Huang,et al.  Mean-variance models for portfolio selection subject to experts' estimations , 2012, Expert Syst. Appl..

[169]  José Torres-Jiménez,et al.  Heuristic Methods for Portfolio Selection at the Mexican Stock Exchange , 2003, IDEAL.

[170]  Yun-Chia Liang,et al.  Portfolio optimization using improved artificial bee colony approach , 2013, 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr).

[171]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[172]  Ralph E. Steuer,et al.  On the increasing importance of multiple criteria decision aid methods for portfolio selection , 2018, J. Oper. Res. Soc..

[173]  Adil Baykasoglu,et al.  Erratum to "A GRASP based solution approach to solve cardinality constrained portfolio optimization problems" [Comput. Indus. Eng. 90 (2015) 339-351] , 2016, Comput. Ind. Eng..

[174]  Kin Keung Lai,et al.  Portfolio Optimization Using Evolutionary Algorithms , 2008 .

[175]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[176]  Jing J. Liang,et al.  Large-scale portfolio optimization using multiobjective dynamic mutli-swarm particle swarm optimizer , 2013, 2013 IEEE Symposium on Swarm Intelligence (SIS).

[177]  Duan Li,et al.  OPTIMAL LOT SOLUTION TO CARDINALITY CONSTRAINED MEAN–VARIANCE FORMULATION FOR PORTFOLIO SELECTION , 2006 .

[178]  Jeffrey Xu Yu,et al.  Factor Model Based Clustering Approach for Cardinality Constrained Portfolio Selection , 2014 .

[179]  Ritesh Kumar,et al.  Cooperative Search Using Agents for Cardinality Constrained Portfolio Selection Problem , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[180]  Sanyang Liu,et al.  Artificial Bee Colony Algorithm for Portfolio Optimization Problems , 2012 .

[181]  Thomas Hanne,et al.  A multiobjective evolutionary algorithm for approximating the efficient set , 2007, Eur. J. Oper. Res..

[182]  Jin Xu,et al.  Stock Portfolio Selection Using Chemical Reaction Optimization , 2011 .

[183]  Ben Niu,et al.  Constrained portfolio selection using multiple swarms , 2010, IEEE Congress on Evolutionary Computation.

[184]  Ali S. Hadi,et al.  New model and method for portfolios selection , 2016 .

[185]  Kin Keung Lai,et al.  Multi-Attribute Portfolio Selection with Genetic Optimization Algorithms , 2009, INFOR Inf. Syst. Oper. Res..

[186]  Nebojsa Bacanin,et al.  Artificial Bee Colony Algorithm Hybridized with Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Selection Problem , 2014 .

[187]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[188]  Mehrdad Tamiz,et al.  A Review of Goal Programming for Portfolio Selection , 2010 .

[189]  Nikos S. Thomaidis Active Portfolio Management from a Fuzzy Multi-objective Programming Perspective , 2010, EvoApplications.

[190]  Woo-Tsong Lin,et al.  Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model , 2010, SEMCCO.

[191]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[192]  Alberto Suárez,et al.  Selection of Optimal Investment Portfolios with Cardinality Constraints , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[193]  Pekka J. Korhonen,et al.  Solving cardinality constrained mean-variance portfolio problems via MILP , 2017, Ann. Oper. Res..

[194]  S. Kiris,et al.  An integrated approach for stock evaluation and portfolio optimization , 2012 .

[195]  Junzo Watada,et al.  A hybrid particle swarm optimization approach to mixed integer quadratic programming for portfolio selection problems , 2010 .

[196]  Byung Ha Lim,et al.  A Minimax Portfolio Selection Rule with Linear Programming Solution , 1998 .

[197]  Davide La Torre,et al.  Financial portfolio management through the goal programming model: Current state-of-the-art , 2014, Eur. J. Oper. Res..

[198]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[199]  Stuart G. Reid,et al.  Constraint Handling Methods for Portfolio Optimization Using Particle Swarm Optimization , 2015, 2015 IEEE Symposium Series on Computational Intelligence.

[200]  Ganapati Panda,et al.  Constrained portfolio asset selection using multiobjective bacteria foraging optimization , 2013, Operational Research.

[201]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[202]  Jun Zhang,et al.  A Dimension-Decreasing Particle Swarm Optimization Method for Portfolio Optimization , 2015, GECCO.

[203]  Victor O. K. Li,et al.  Chemical-Reaction-Inspired Metaheuristic for Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[204]  Alberto Suárez,et al.  Hybrid Approaches and Dimensionality Reduction for Portfolio Selection with Cardinality Constraints , 2010, IEEE Computational Intelligence Magazine.

[205]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[206]  Ganapati Panda,et al.  Prediction based mean-variance model for constrained portfolio assets selection using multiobjective evolutionary algorithms , 2016, Swarm Evol. Comput..

[207]  Ridvan Keskin,et al.  A novel portfolio selection model based on fuzzy goal programming with different importance and priorities , 2015, Expert Syst. Appl..

[208]  Ehram Safari,et al.  Robust optimization framework for cardinality constrained portfolio problem , 2012, Appl. Soft Comput..

[209]  Rodrigo T. N. Cardoso,et al.  Decision-making for financial trading: A fusion approach of machine learning and portfolio selection , 2019, Expert Syst. Appl..

[210]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[211]  Meryem Masmoudi,et al.  Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models , 2017, Annals of Operations Research.

[212]  Andreas Zell,et al.  Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[213]  Konstantinos P. Anagnostopoulos,et al.  The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..

[214]  Franco Raoul Busetti Heuristic Approaches To RealisticPortfolio Optimisation , 2006 .

[215]  Xiaojun Wu,et al.  Solving the multi-stage portfolio optimization problem with a novel particle swarm optimization , 2011, Expert Syst. Appl..

[216]  Lavi Rizki Zuhal,et al.  Resolving multi objective stock portfolio optimization problem using genetic algorithm , 2010, 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE).

[217]  C. Lucas,et al.  Heuristic algorithms for the cardinality constrained efficient frontier , 2011, Eur. J. Oper. Res..

[218]  W. Shadwick,et al.  A Universal Performance Measure , 2002 .

[219]  Konstantinos P. Anagnostopoulos,et al.  A portfolio optimization model with three objectives and discrete variables , 2010, Comput. Oper. Res..

[220]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[221]  Zhijian Wu,et al.  A Simple and Fast Particle Swarm Optimization and Its Application on Portfolio Selection , 2009, 2009 International Workshop on Intelligent Systems and Applications.

[222]  Ke Wang,et al.  A Novel Constraint Handling Technique for Complex Portfolio Selection , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[223]  Alberto Suárez,et al.  A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs , 2015, Appl. Soft Comput..

[224]  Kay Chen Tan,et al.  Evolutionary multi-objective portfolio optimization in practical context , 2008, Int. J. Autom. Comput..

[225]  Bijay Ketan Panigrahi,et al.  Multiobjective bacteria foraging algorithm for electrical load dispatch problem , 2011 .

[226]  A. Roli,et al.  Hybrid metaheuristics for constrained portfolio selection problems , 2011 .

[227]  Shu-Chuan Chu,et al.  COMPUTATIONAL INTELLIGENCE BASED ON THE BEHAVIOR OF CATS , 2007 .

[228]  F. Jolai,et al.  A new IPSO-SA approach for cardinality constrained portfolio optimization , 2011 .

[229]  Miguel A. Lejeune,et al.  An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints , 2009, Oper. Res..

[230]  S.M.T. Fatemi Ghomi,et al.  Cardinality Constrained Portfolio Optimization Using a Hybrid Approach Based on Particle Swarm Optimization and Hopfield Neural Network , 2012 .

[231]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[232]  Sanyang Liu,et al.  An Improved Artificial Bee Colony Algorithm for Portfolio Optimization Problem , 2011 .

[233]  Kannan Govindan,et al.  Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future , 2015, Eur. J. Oper. Res..

[234]  Shahaboddin Shamshirband,et al.  2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization , 2017, Algorithms.

[235]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..