Effects of increased wood energy consumption on global warming potential, primary energy demand and particulate matter emissions on regional level based on the case study area Bavaria (Southeast Germany)

Abstract Wood energy use has strongly increased in Europe in the last decade entailing enhanced resource competition between the wood energy sector and the material-based wood sector. We applied the basket of benefit method for the forestry and wood cluster of the study area Bavaria to evaluate the impact of increased wood energy use and decreased material-based wood use on global warming potential, primary energy demand and particulate matter emissions. A baseline and a wood energy scenario were developed until 2035 and wood utilization in both scenarios was assessed via a Life Cycle Assessment of prevalent wood products, imported timber and conventional alternatives of use. The study reveals that, according to the modelled scenarios and the average substitution factors used, a demand shift towards more wood energy leads to a minor increase in global warming potential and to a reduction in primary energy demand. Increase in particulate matter emissions from wood energy use is strong, but definite conclusions cannot be drawn due to lack in data for material-based wood use. Moreover, the study results vary strongly depending on the products used for the comparative analysis. Through our approach, the ecological impact of increased wood energy use becomes visible for a whole region, taking into account the effect of a demand shift and of interdependent substitution effects.

[1]  Maria Bystricky,et al.  Comparing environmental impacts of electricity, heat and fuel from energy crops: Evaluating biogas utilization pathways by the basket of benefit methodology , 2010 .

[2]  Amany von Oehsen,et al.  Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global , 2012 .

[3]  James B. Wilson LIFE-CYCLE INVENTORY OF FORMALDEHYDE-BASED RESINS USED IN WOOD COMPOSITES IN TERMS OF RESOURCES, EMISSIONS, ENERGY AND CARBON , 2010 .

[4]  Udo Mantau,et al.  Holzrohstoffbilanz Deutschland : Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung von 1987 bis 2015 , 2012 .

[5]  Ingwald Obernberger,et al.  Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles , 2012, Environmental Sciences Europe.

[6]  Günter Fleischer,et al.  Waste, 2. Life‐Cycle Assessment , 2011 .

[7]  Matthias Dieter,et al.  Änderung der Wettbewerbsfähigkeit der Holz- und Papierwirtschaft in Deutschland auf Grund zunehmender Knappheit an Nadelholz , 2012 .

[8]  J. Rogelj,et al.  Disentangling the effects of CO2 and short-lived climate forcer mitigation , 2014, Proceedings of the National Academy of Sciences.

[9]  Roger Sathre,et al.  A Synthesis of Research on Wood Products and Greenhouse Gas Impacts , 2008 .

[10]  Thomas Lang,et al.  Biological effects monitoring in marine research , 2012, Environmental Sciences Europe.

[11]  C. Guerreiro Air quality in Europe : 2013 report , 2013 .

[12]  Rainer Zah,et al.  Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective. , 2012, Environmental science & technology.

[13]  L. Gustavsson,et al.  Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns , 2011 .

[14]  Günter Fleischer,et al.  Aufwands- und ergebnisrelevante Probleme der Sachbilanzierung , 2002 .

[15]  Eric Johnson,et al.  Goodbye to carbon neutral: Getting biomass footprints right , 2009 .

[16]  Thomas Knoke,et al.  The influence of the oil price on timber supply , 2014 .

[17]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[18]  N. Meyer,et al.  Particulate, black carbon and organic emissions from small-scale residential wood combustion appliances in Switzerland , 2012 .

[19]  Jamie Meil,et al.  Prospects for carbon-neutral housing: the influence of greater wood use on the carbon footprint of a single-family residence , 2009 .

[20]  David Pennington,et al.  Recent developments in Life Cycle Assessment. , 2009, Journal of environmental management.

[21]  Daniel Tschudi,et al.  Baseline effects on carbon footprints of biofuels: The case of wood , 2012 .

[22]  Markus Feldmann,et al.  Die Ökobilanz als Baustein der Nachhaltigkeitsbewertung im Industrie- und Gewerbebau , 2010 .

[23]  Staffan Melin,et al.  An environmental impact assessment of exported wood pellets from Canada to Europe. , 2009 .

[24]  Clara Valente,et al.  Greenhouse Gas Emissions, Energy Use, and Costs—Case Studies of Wood Fuel Supply Chains in Scandinavia , 2012 .

[25]  Gabriele Weber-Blaschke,et al.  Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion , 2014, The International Journal of Life Cycle Assessment.

[26]  Linda S. Heath,et al.  The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States , 2008 .

[27]  Thomas Nussbaumer,et al.  Particulate Emissions from Biomass Combustion in IEA Countries Survey on Measurements and Emission Factors. , 2008 .