New Quantum Caps in PG(4, 4)

Calderbank, Rains, Shor, and Sloane (see [10]) showed that quantum stabilizer codes correspond to additive quaternary codes in binary projective spaces, which are self-orthogonal with respect to the symplectic form. A geometric description is given in [8, 19]. In [8] the notion of a quantum cap is introduced. Quantum caps are equivalent to quantum stabilizer codes of minimum distance d=4 when the code is linear over GF(4). In this paper, we determine the values k such that there exists a quantum k-cap in PG(4,4), corresponding to pure linear [[n,n-10,4]] quantum codes, proving, by exhaustive search, that no 11, 37, 39-quantum caps exist. Moreover we give examples of quantum caps in PG(4,4) not already known in the literature.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[6]  Stefano Marcugini,et al.  Projective Planes, Coverings and a Network Problem , 2003, Des. Codes Cryptogr..

[7]  A. Steane,et al.  Introduction to quantum error correction , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  H. S. Allen The Quantum Theory , 1928, Nature.

[9]  Fernanda Pambianco,et al.  On the spectrum of the valuesk for which a completek- cap in PG(n, q) exists , 1998 .

[10]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[11]  Daniele Bartoli,et al.  The minimum order of complete caps in PG(4, 4) , 2011, Adv. Math. Commun..

[12]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[13]  Yuan Zhou Introduction to Coding Theory , 2010 .

[14]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  R. Feynman Quantum mechanical computers , 1986 .

[16]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[17]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[18]  Raymond Hill,et al.  Caps and codes , 1978, Discret. Math..

[19]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[20]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[21]  Vladimir D. Tonchev Quantum codes from caps , 2008, Discret. Math..

[22]  Yves Edel,et al.  41 is the Largest Size of a Cap in PG(4,4) , 1999, Des. Codes Cryptogr..

[23]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Stefano Marcugini,et al.  The smallest size of a complete cap in PG(3, 7) , 2006, Discret. Math..

[25]  Alfredo Milani,et al.  The sizes k of the complete k-caps in PG(n, q), for small q and 3 <= n >= 5 , 1998, Ars Comb..

[26]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[27]  Stefano Marcugini,et al.  On the spectrum of sizes of complete caps in projective spaces PG(n,q) of small dimension , 2008 .

[28]  Stefano Marcugini,et al.  On sizes of complete caps in projective spaces PG(n, q) and arcs in planes PG(2, q) , 2009 .

[29]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[30]  Yves Edel,et al.  The Largest Cap in AG(4, 4) and Its Uniqueness , 2003, Des. Codes Cryptogr..

[31]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[32]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[33]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.