Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology.

With its ability to observe, manipulate and explore the functional components of the biological cell at subnanometre resolution, atomic force microscopy (AFM) has produced a wealth of new opportunities in nanobiotechnology. Evolving from an imaging technique to a multifunctional 'lab-on-a-tip', AFM-based force spectroscopy is increasingly used to study the mechanisms of molecular recognition and protein folding, and to probe the local elasticity, chemical groups and dynamics of receptor-ligand interactions in live cells. AFM cantilever arrays allow the detection of bioanalytes with picomolar sensitivity, opening new avenues for medical diagnostics and environmental monitoring. Here we review the fascinating opportunities offered by the rapid advances in AFM.

[1]  John E. Sader,et al.  PROBING THE SURFACE OF LIVING DIATOMS WITH ATOMIC FORCE MICROSCOPY: THE NANOSTRUCTURE AND NANOMECHANICAL PROPERTIES OF THE MUCILAGE LAYER 1 , 2003 .

[2]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[3]  S. Petrou,et al.  Pore-forming proteins and their application in biotechnology. , 2002, Current pharmaceutical biotechnology.

[4]  Ansgar Philippsen,et al.  Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. , 2002, Biophysical journal.

[5]  C. Gerber,et al.  Atomic force bio-analytics. , 2003, Current opinion in chemical biology.

[6]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[7]  Mervyn J Miles,et al.  Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second , 2003 .

[8]  Chad A. Mirkin,et al.  Nanobiotechnology :concepts, applications and perspectives , 2005 .

[9]  Yves F. Dufrêne,et al.  Using nanotechniques to explore microbial surfaces , 2004, Nature Reviews Microbiology.

[10]  Daniel J. Muller,et al.  Differentiating ligand and inhibitor interactions of a single antiporter. , 2006, Journal of molecular biology.

[11]  H. Gaub,et al.  Atomic force microscope imaging contrast based on molecular recognition. , 1997, Biophysical journal.

[12]  Yves F Dufrêne,et al.  Chemical force microscopy of single live cells. , 2007, Nano letters.

[13]  Yves F Dufrêne,et al.  High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. , 2008, Biophysical journal.

[14]  Matthias Rief,et al.  The myosin coiled-coil is a truly elastic protein structure , 2002, Nature materials.

[15]  Daniel J. Muller,et al.  Locating ligand binding and activation of a single antiporter , 2005, EMBO reports.

[16]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[17]  Martin Hegner,et al.  An Antibody-Sensitized Microfabricated Cantilever for the Growth Detection of Aspergillus niger Spores , 2007, Microscopy and Microanalysis.

[18]  Jelena Mandic,et al.  Chemomechanical mapping of ligand–receptor binding kinetics on cells , 2007, Proceedings of the National Academy of Sciences.

[19]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[20]  Manfred Radmacher,et al.  Direct, high-resolution measurement of furrow stiffening during division of adherent cells , 2001, Nature Cell Biology.

[21]  Harold P. Erickson,et al.  Force Measurements of the α5β1 Integrin–Fibronectin Interaction , 2003 .

[22]  Daniel J Müller,et al.  Single-molecule studies of membrane proteins. , 2006, Current opinion in structural biology.

[23]  N. D. Rooij,et al.  Assessment of insulated conductive cantilevers for biology and electrochemistry , 2005 .

[24]  Hui Lu,et al.  The mechanical stability of ubiquitin is linkage dependent , 2003, Nature Structural Biology.

[25]  P K Hansma,et al.  Measuring the viscoelastic properties of human platelets with the atomic force microscope. , 1996, Biophysical journal.

[26]  H. Gaub,et al.  Single-Molecule Cut-and-Paste Surface Assembly , 2008, Science.

[27]  H. Lang,et al.  How the doors to the nanoworld were opened , 2006, Nature nanotechnology.

[28]  Daniel J. Muller,et al.  The c15 ring of the Spirulina platensis F‐ATP synthase: F1/F0 symmetry mismatch is not obligatory , 2005, EMBO reports.

[29]  Hongbin Li,et al.  Polyprotein of GB1 is an ideal artificial elastomeric protein. , 2007, Nature materials.

[30]  Harald Janovjak,et al.  From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  C Rotsch,et al.  Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. , 2000, Biophysical journal.

[32]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[33]  Gil U. Lee,et al.  Direct measurement of the forces between complementary strands of DNA. , 1994, Science.

[34]  Daniel J Müller,et al.  Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. , 2007, Annual review of biophysics and biomolecular structure.

[35]  Krzysztof Palczewski,et al.  Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches , 2008, Pharmacological Reviews.

[36]  Martin Hegner,et al.  Label free analysis of transcription factors using microcantilever arrays. , 2006, Biosensors & bioelectronics.

[37]  Alain R. Baulard,et al.  Organization of the mycobacterial cell wall: a nanoscale view , 2008, Pflügers Archiv - European Journal of Physiology.

[38]  Emanuele Paci,et al.  Pulling geometry defines the mechanical resistance of a β-sheet protein , 2003, Nature Structural Biology.

[39]  Jens Waschke,et al.  Nano-scale dynamic recognition imaging on vascular endothelial cells. , 2007, Biophysical journal.

[40]  V. Daggett,et al.  Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. , 2001, Biophysical journal.

[41]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[42]  J. Fritz,et al.  Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Bernard Nysten,et al.  Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy , 2003 .

[44]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[45]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[46]  Yves F Dufrêne,et al.  Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. , 2008, Environmental microbiology.

[47]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  C. Mirkin,et al.  Applications of dip-pen nanolithography. , 2007, Nature nanotechnology.

[49]  H. Gaub,et al.  Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. , 1998, Biophysical journal.

[50]  Viola Vogel,et al.  Molecular Shuttles Operating Undercover: A New Photolithographic Approach for the Fabrication of Structured Surfaces Supporting Directed Motility , 2003 .

[51]  Jonathon Howard,et al.  Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol , 2007, Current Biology.

[52]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[53]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[54]  M. Krieg,et al.  Tensile forces govern germ-layer organization in zebrafish , 2008, Nature Cell Biology.

[55]  Takashi Sasaki,et al.  Recent progress on nanovehicles. , 2006, Chemical Society reviews.

[56]  H. Gaub,et al.  Intermolecular forces and energies between ligands and receptors. , 1994, Science.

[57]  Daniel J. Muller,et al.  Aminosulfonate Modulated pH-induced Conformational Changes in Connexin26 Hemichannels* , 2007, Journal of Biological Chemistry.

[58]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[59]  Wilfried Grange,et al.  Analyzing Gene Expression Using Combined Nanomechanical Cantilever Sensors , 2007 .

[60]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[61]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[62]  C. Rotsch,et al.  Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Charles M. Lieber,et al.  Functional Group Imaging by Chemical Force Microscopy , 1994, Science.

[64]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[65]  J. Onuchic,et al.  Navigating the folding routes , 1995, Science.

[66]  Daniel J Müller,et al.  Conformational changes in surface structures of isolated connexin 26 gap junctions , 2002, The EMBO journal.

[67]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[68]  Yves F Dufrêne,et al.  Direct measurement of hydrophobic forces on cell surfaces using AFM. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[69]  Subra Suresh,et al.  Biomechanics and biophysics of cancer cells. , 2007, Acta biomaterialia.

[70]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[71]  Jens Friedrichs,et al.  Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. , 2007, Molecular biology of the cell.

[72]  S. Hell,et al.  Nanoscale resolution in GFP-based microscopy , 2006, Nature Methods.

[73]  Masatoshi Yokokawa,et al.  Fast‐scanning atomic force microscopy reveals the ATP/ADP‐dependent conformational changes of GroEL , 2006, The EMBO journal.

[74]  Aleksandr Noy,et al.  Chemical force microscopy of chemical and biological interactions , 2006 .

[75]  Y. Lyubchenko An Atomic Force Microscopy Study , 2004 .

[76]  Krzysztof Palczewski,et al.  Rhodopsin dimers in native disc membranes: Neat rows of paired photon receptors are caught on camera in their natural state , 2003 .

[77]  Feiya Li,et al.  Force measurements of the alpha5beta1 integrin-fibronectin interaction. , 2003, Biophysical journal.

[78]  Viola Vogel,et al.  Nanobiotechnology Report of the National Nanotechnology Initiative Workshop, October 9-11, 2003, Arlington, Virginia , 2005 .

[79]  Peter Michaely,et al.  Nanospring behaviour of ankyrin repeats , 2006, Nature.

[80]  Hermann E. Gaub,et al.  Discrete interactions in cell adhesion measured by single-molecule force spectroscopy , 2000, Nature Cell Biology.

[81]  Ernst Meyer,et al.  Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology , 2002 .

[82]  Emanuele Paci,et al.  Pulling geometry defines the mechanical resistance of a beta-sheet protein. , 2003, Nature structural biology.

[83]  Krzysztof Palczewski,et al.  Oligomerization of G protein-coupled receptors: past, present, and future. , 2004, Biochemistry.

[84]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[85]  Martin Hegner,et al.  Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. , 2005, Biosensors & bioelectronics.

[86]  Jacob Piehler,et al.  Native protein nanolithography that can write, read and erase. , 2007, Nature nanotechnology.

[87]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .

[88]  Daniel J. Muller,et al.  BCR/ABL expression of myeloid progenitors increases beta1-integrin mediated adhesion to stromal cells. , 2008, Journal of molecular biology.

[89]  Hendrik Dietz,et al.  Anisotropic deformation response of single protein molecules , 2006, Proceedings of the National Academy of Sciences.

[90]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[91]  Daniel J. Müller,et al.  Observing single biomolecules at work with the atomic force microscope , 2000, Nature Structural Biology.

[92]  Toshio Yanagida,et al.  A single myosin head moves along an actin filament with regular steps of 5.3 nanometres , 1999, Nature.

[93]  A. Credi,et al.  Molecular Devices and Machines , 2007, New Frontiers in Nanochemistry.

[94]  E. Evans Probing the relation between force--lifetime--and chemistry in single molecular bonds. , 2001, Annual review of biophysics and biomolecular structure.

[95]  Julio M Fernandez,et al.  Force-Clamp Spectroscopy Monitors the Folding Trajectory of a Single Protein , 2004, Science.

[96]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[97]  Daniel J. Muller,et al.  Examining the dynamic energy landscape of an antiporter upon inhibitor binding. , 2008, Journal of molecular biology.

[98]  C. Dobson Protein folding and misfolding , 2003, Nature.

[99]  H. Lang,et al.  Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Andreas Engel,et al.  The supramolecular assemblies of voltage-dependent anion channels in the native membrane. , 2007, Journal of molecular biology.

[101]  Viola Vogel,et al.  Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells , 2007, PLoS biology.

[102]  Peter Hinterdorfer,et al.  Antibody recognition imaging by force microscopy , 1999, Nature Biotechnology.

[103]  Ling Wang,et al.  Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. , 2007, Nano letters.

[104]  Sandor Kasas,et al.  Deformation and height anomaly of soft surfaces studied with an AFM , 1993 .

[105]  P K Hansma,et al.  Stepwise unfolding of titin under force-clamp atomic force microscopy. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[106]  P K Hansma,et al.  Escherichia coli RNA polymerase activity observed using atomic force microscopy. , 1997, Biochemistry.

[107]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[108]  Jens Friedrichs,et al.  Revealing Early Steps of α2β1 Integrin-mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy , 2007 .