Kinematics of ICMEs/Shocks: Blast Wave Reconstruction Using Type-II Emissions

We present a physical methodology for reconstructing the trajectory of interplanetary shocks using Type-II radio emission data. This technique calculates the shock trajectory assuming that the disturbance propagates as a blast wave in the interplanetary medium. We applied this blast-wave reconstruction (BWR) technique to analyze eight fast Earth-directed ICMEs/shocks associated with Type-II emissions. The technique deduces a shock trajectory that reproduces the Type-II frequency drifts and calculates shock onset speed, shock travel time, and shock speed at 1 AU. The BWR results agreed well with the Type-II spectra, with data from coronagraph images, in-situ measurements, and interplanetary scintillation observations. Perturbations in the Type-II data affect the accuracy of the BWR technique. This methodology could be applied to track interplanetary shocks causing Type-II emissions in real-time and to predict the shock arrival time and shock speed at 1 AU.

[1]  N. Gopalswamy,et al.  Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era , 2008 .

[2]  M. Dryer,et al.  Dynamical models of coronal transients and interplanetary disturbances , 1984 .

[3]  N. Gopalswamy,et al.  Interplanetary acceleration of coronal mass ejections , 2000 .

[4]  J. Gonzalez-Esparza,et al.  Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with Type II Radio-Burst Emission: An Analytic Study , 2013 .

[5]  E. Aguilar-Rodriguez,et al.  Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions , 2009 .

[6]  M. Dryer,et al.  A practical database method for predicting arrivals of "average'' interplanetary shocks at Earth , 2009 .

[7]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[8]  Jason P. Byrne,et al.  AUTOMATIC DETECTION AND TRACKING OF CORONAL MASS EJECTIONS. II. MULTISCALE FILTERING OF CORONAGRAPH IMAGES , 2012, 1207.6125.

[9]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[10]  Shadia Rifai Habbal,et al.  AUTOMATICALLY DETECTING AND TRACKING CORONAL MASS EJECTIONS. I. SEPARATION OF DYNAMIC AND QUIESCENT COMPONENTS IN CORONAGRAPH IMAGES , 2012 .

[11]  H. Kuo,et al.  On the extreme rainfall of Typhoon Morakot (2009) , 2011 .

[12]  S. Wu,et al.  Direct Detection of a Coronal Mass Ejection-Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White-Light Images , 2003 .

[13]  C. J. Owen,et al.  From the Sun to the Earth: The 13 May 2005 Coronal Mass Ejection , 2010 .

[14]  S. Knock,et al.  Type II radio emission predictions: Sources of coronal and interplanetary spectral structure , 2005 .

[15]  J. Gonzalez-Esparza,et al.  Geomagnetic storms caused by shocks and ICMEs , 2010 .

[16]  E. Parker Sudden Expansion of the Corona Following a Large Solar Flare and the Attendant Magnetic Field and Cosmic-Ray Effects. , 1961 .

[17]  Russell A. Howard,et al.  The SOHO/LASCO CME Catalog , 2009 .

[18]  M. L. Kaiser,et al.  Coronal and Interplanetary Propagation of CME/Shocks from Radio, In Situ and White-Light Observations , 2007 .

[19]  N. Sheeley,et al.  Energetic interplanetary shocks, radio emission, and coronal mass ejections , 1987 .

[20]  N. Gopalswamy Properties of Interplanetary Coronal Mass Ejections , 2007 .

[21]  Xinhua Zhao,et al.  A New Prediction Method for the Arrival Time of Interplanetary Shocks , 2006 .

[22]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[23]  J. F. Mckenzie,et al.  Differential ion streaming in the solar wind as an equilibrium state , 2005 .

[24]  M. Rogers Analytic Solutions for the Blast-Wave Problem with an Atmosphere of Varying Density. , 1957 .

[25]  R. Stone,et al.  Type II solar radio bursts, interplanetary shocks, and energetic particle events , 1984 .

[26]  S. Knock,et al.  Theoretically predicted properties of type II radio emission from an interplanetary foreshock , 2003 .

[27]  M. A. Shea,et al.  A simplified model for timing the arrival of solar flare‐initiated shocks , 1985 .

[28]  M. Dryer,et al.  The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves , 1985 .

[29]  M. Kaiser,et al.  A tool to improve space weather forecasts: Kilometric radio emissions from Wind/WAVES , 2007 .

[30]  James Chen,et al.  Acceleration of coronal mass ejections , 2002 .

[31]  Lou‐Chuang Lee,et al.  Are all leading shocks driven by magnetic clouds , 2010 .

[32]  Angelos Vourlidas,et al.  Tracing shock waves from the corona to 1 AU: Type II radio emission and relationship with CMEs , 2001 .

[33]  Wenzhi Song An Analytical Model to Predict the Arrival Time of Interplanetary CMEs , 2010 .

[34]  N. Gopalswamy,et al.  A universal characteristic of type II radio bursts , 2005 .

[35]  P. Gallagher,et al.  STEREO DIRECT IMAGING OF A CORONAL MASS EJECTION-DRIVEN SHOCK TO 0.5 AU , 2011, 1106.1593.

[36]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[37]  M. H. Rogers,et al.  SIMILARITY FLOWS BEHIND STRONG SHOCK WAVES , 1958 .

[38]  Christopher T. Russell,et al.  Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections , 1999 .

[39]  A. Cavaliere,et al.  Propagation of blast waves. , 1976 .

[40]  T. Detman,et al.  In situ local shock speed and transit shock speed , 1998 .

[41]  Murray Dryer,et al.  Interplanetary shock waves generated by solar flares , 1974 .

[42]  J. Gonzalez-Esparza,et al.  Numeric and analytic study of interplanetary coronal mass ejection and shock evolution: Driving, decoupling, and decaying , 2011 .

[43]  C. Perche,et al.  WAVES: The radio and plasma wave investigation on the wind spacecraft , 1995 .

[44]  P. Corona-Romero,et al.  A stationary bow shock model for plasmas: The spherical blunt obstacle problem , 2013 .

[45]  Nat Gopalswamy,et al.  An empirical model to predict the 1-AU arrival of interplanetary shocks , 2002 .

[46]  A. Hundhausen,et al.  Satellite observations of interplanetary shock waves , 1968 .

[47]  A. B. Galvin,et al.  ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION , 2011, The Astrophysical Journal.