Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores.

In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.8- to 2-nm diameter in 5- to 8-nm-thick membranes) can resolve differences between ionic current signals produced by short (30 base) ssDNA homopolymers (poly(dA), poly(dC), poly(dT)), when combined with measurement electronics that allow a signal-to-noise ratio of better than 10 to be achieved at 1-MHz bandwidth. While identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels, homopolymer differentiation represents an important milestone in the development of solid-state nanopores.

[1]  F. Sigworth Electronic Design of the Patch Clamp , 1983 .

[2]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[4]  Jean Sturm,et al.  Persistence Length of Single-Stranded DNA , 1997 .

[5]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[6]  D. Deamer,et al.  Nanopores and nucleic acids: prospects for ultrarapid sequencing. , 2000, Trends in biotechnology.

[7]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[9]  Amit Meller,et al.  Single molecule measurements of DNA transport through a nanopore , 2002, Electrophoresis.

[10]  D. Branton,et al.  Characterization of nucleic acids by nanopore analysis. , 2002, Accounts of chemical research.

[11]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[12]  Georg E. Schulz,et al.  The Structure of a Mycobacterial Outer-Membrane Channel , 2004, Science.

[13]  Rick Gussio,et al.  Anthrax Biosensor, Protective Antigen Ion Channel Asymmetric Blockade* , 2005, Journal of Biological Chemistry.

[14]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.

[15]  Chuen Ho,et al.  Electrolytic transport through a synthetic nanometer-diameter pore. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Marija Drndic,et al.  Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures , 2006 .

[17]  Claudia Felser,et al.  Powder magnetoresistance of Co2Cr0.6Fe0.4Al/ Al2O3 powder compacts , 2006 .

[18]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[19]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[20]  A. Morrison,et al.  Solid-state nanopore technologies for nanopore-based DNA analysis. , 2007, Nanomedicine.

[21]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[22]  K. Rubinson,et al.  Single-molecule mass spectrometry in solution using a solitary nanopore , 2007, Proceedings of the National Academy of Sciences.

[23]  Gerhard Hummer,et al.  Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. , 2007, Biophysical journal.

[24]  Meni Wanunu,et al.  Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. , 2008, Nano letters.

[25]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[26]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[27]  M. Niederweis,et al.  Single-molecule DNA detection with an engineered MspA protein nanopore , 2008, Proceedings of the National Academy of Sciences.

[28]  G. Timp,et al.  Stretching and unzipping nucleic acid hairpins using a synthetic nanopore , 2008, Nucleic acids research.

[29]  J. Reiner,et al.  Nanoscopic porous sensors. , 2008, Annual review of analytical chemistry.

[30]  G. Timp,et al.  Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. , 2009, Biophysical journal.

[31]  Ryuji Kawano,et al.  Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[32]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[33]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[34]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[35]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[36]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[37]  Cees Dekker,et al.  Detection of local protein structures along DNA using solid-state nanopores. , 2010, Nano letters.

[38]  Zhang Guoqiang,et al.  金触媒化蒸気-液体-固体モードを経て[311]B基板上で横方向に成長した オリエンテーションを備えた平行配向GaAsナノワイヤ , 2010 .

[39]  J. Reiner,et al.  Theory for polymer analysis using nanopore-based single-molecule mass spectrometry , 2010, Proceedings of the National Academy of Sciences.

[40]  K. Lieberman,et al.  Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. , 2010, Journal of the American Chemical Society.

[41]  Cees Dekker,et al.  Controlling nanopore size, shape and stability , 2010, Nanotechnology.

[42]  Aleksei Aksimentiev,et al.  Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix , 2010, Nanotechnology.

[43]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[44]  DNA Translocation through Graphene Nanopores , 2011 .

[45]  M. Drndić,et al.  Nanopore analysis of individual RNA/antibiotic complexes. , 2011, ACS nano.

[46]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[47]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[48]  L. Qin,et al.  Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection , 2011, Nanotechnology.

[49]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[50]  Minchen Chien,et al.  PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis , 2012, Scientific Reports.

[51]  Mohammad S Noor,et al.  ナノチューブの成長,整列,キラリティおよび特性における触媒液滴の双極子モーメントの可能な役割 , 2012 .

[52]  Mark Akeson,et al.  Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision1 , 2012, Nature Biotechnology.

[53]  Aleksei Aksimentiev,et al.  DNA base-calling from a nanopore using a Viterbi algorithm. , 2012, Biophysical journal.

[54]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[55]  K. Lieberman,et al.  Dynamics of the translocation step measured in individual DNA polymerase complexes. , 2012, Journal of the American Chemical Society.

[56]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[57]  M. Drndić,et al.  Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution , 2012, Electrophoresis.

[58]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[59]  Aaron T. Kuan,et al.  Nanometer-thin solid-state nanopores by cold ion beam sculpting. , 2012, Applied physics letters.

[60]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[61]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[62]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[63]  Jason Campbell,et al.  Disease detection and management via single nanopore-based sensors. , 2012, Chemical reviews.

[64]  Shizhi Qian,et al.  Slowing down DNA translocation through a nanopore by lowering fluid temperature , 2012, Electrophoresis.

[65]  Joshua B Edel,et al.  Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. , 2013, Chemical Society reviews.

[66]  Makusu Tsutsui,et al.  Thermophoretic manipulation of DNA translocation through nanopores. , 2013, ACS nano.

[67]  P. Borer,et al.  Sampling a biomarker of the human immunodeficiency virus across a synthetic nanopore. , 2013, ACS nano.