Toward a general frame semantics for modal many-valued logics

Frame semantics, given by Kripke or neighborhood frames, do not give completeness theorems for all modal logics extending, respectively, K and E. Such shortcoming can be overcome by means of general frames, i.e., frames equipped with a collection of admissible sets of worlds (which is the range of possible valuations over such frame). We export this approach from the classical paradigm to modal many-valued logics by defining general $${\varvec{A}}$$A-frames over a given residuated lattice $${\varvec{A}}$$A (i.e., the usual frames with a collection of admissible $${\varvec{A}}$$A-valued sets). We describe in detail the relation between general Kripke and neighborhood $${\varvec{A}}$$A-frames and prove that, if the logic of $${\varvec{A}}$$A is finitary, all extensions of the corresponding logic E of $${\varvec{A}}$$A are complete w.r.t. general neighborhood frames. Our work provides a new approach to the current research trend of generalizing relational semantics for non-classical modal logics to circumvent axiomatization problems.

[1]  Petr Cintula,et al.  Implicational (semilinear) logics III: completeness properties , 2018, Arch. Math. Log..

[2]  Nick Bezhanishvili,et al.  Finitely generated free Heyting algebras via Birkhoff duality and coalgebra , 2011, Log. Methods Comput. Sci..

[3]  Bruno Teheux,et al.  Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics , 2013, Stud Logica.

[4]  Petr Hájek,et al.  On fuzzy modal logics S5(L) , 2010, Fuzzy Sets Syst..

[5]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[6]  André Fuhrmann,et al.  Models for relevant modal logics , 1990, Stud Logica.

[7]  Dana S. Scott,et al.  Advice on Modal Logic , 1970 .

[8]  Petr Cintula,et al.  Neighborhood semantics for modal many-valued logics , 2018, Fuzzy Sets Syst..

[9]  Xavier Caicedo,et al.  Bi-modal Gödel logic over [0, 1]-valued Kripke frames , 2011, J. Log. Comput..

[10]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[11]  Xavier Caicedo,et al.  Decidability of Order-Based Modal Logics , 2016 .

[12]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[13]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[14]  Xavier Caicedo,et al.  Standard Gödel Modal Logics , 2010, Stud Logica.

[15]  Amanda Vidal Wandelmer On modal expansions of t-norm based logics with rational constants , 2015 .

[16]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[17]  Lluis Godo,et al.  On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice , 2008, J. Log. Comput..

[18]  L. Godo,et al.  Exploring a Syntactic Notion of Modal Many-Valued Logics , 2008, SOCO 2008.

[19]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[20]  Petr Cintula,et al.  Fuzzy class theory , 2005, Fuzzy Sets Syst..

[21]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[22]  Martina Danková,et al.  Relational compositions in Fuzzy Class Theory , 2009, Fuzzy Sets Syst..

[23]  Lluis Godo,et al.  On modal extensions of Product fuzzy logic , 2017, J. Log. Comput..

[24]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[25]  Nicola Olivetti,et al.  Towards a Proof Theory of Gödel Modal Logics , 2011, Log. Methods Comput. Sci..

[26]  Richard Sylvan,et al.  The semantics of entailment—II , 1972, Journal of Philosophical Logic.

[27]  Marta Bílková,et al.  Expressivity of Many-Valued Modal Logics, Coalgebraically , 2016, WoLLIC.