Effects of hollow glass microspheres on the polybenzoxazine thermosets: Mechanical, thermal, heat insulation, and morphological properties

[1]  Jun Wang,et al.  Synthesis of novel multi-functional fluorene-based benzoxazine resins: Polymerization behaviour, curing kinetics, and thermal properties , 2019, Reactive and Functional Polymers.

[2]  A. Ullas,et al.  Rheokinetic studies and compressive response of high performance polybenzoxazine syntactic foams , 2018, Journal of Applied Polymer Science.

[3]  Hongyu Yang,et al.  Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin. , 2018, Journal of colloid and interface science.

[4]  J. Ryszkowska,et al.  Thermal and mechanical properties of ureaurethane elastomer composites with hollow glass spheres , 2018 .

[5]  Shaoxiang Li,et al.  Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. , 2017, Journal of hazardous materials.

[6]  Z. Yao,et al.  Microcosmic morphology and properties of hollow glass beads reinforced polylactic acid–based foam composites , 2016 .

[7]  Jun Wang,et al.  Effects of aluminium nitride silane-treatment on the mechanical and thermal properties of polybenzoxazine matrix , 2016 .

[8]  D. Pinisetty,et al.  Hollow Glass Microspheres in Thermosets-Epoxy Syntactic Foams , 2015 .

[9]  Jun Wang,et al.  Mechanical and thermal properties of silicon nitride reinforced polybenzoxazine nanocomposites , 2014 .

[10]  Jun Wang,et al.  Effect of crab shell particles on the thermomechanical and thermal properties of polybenzoxazine matrix , 2014 .

[11]  Shaoxiang Li,et al.  Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites , 2014 .

[12]  R. Mei,et al.  Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property , 2013 .

[13]  X. Luo,et al.  Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites , 2013 .

[14]  M. Mariatti,et al.  Effect of hybrid phenolic hollow microsphere and silica-filled vinyl ester composites , 2013 .

[15]  B. Zhu,et al.  Thermal, dielectric and compressive properties of hollow glass microsphere filled epoxy-matrix composites , 2012 .

[16]  B. Yalçin,et al.  Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres , 2012 .

[17]  Jingjie Zhang,et al.  Influence of the real density and structure imperfection of hollow glass microspheres on the compression strength , 2011 .

[18]  N. Gupta,et al.  High strain rate compressive response of syntactic foams: Trends in mechanical properties and failure mechanisms , 2011 .

[19]  Ravi Kumar,et al.  Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams , 2011 .

[20]  Liying Zhang,et al.  Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam , 2010 .

[21]  M. Porfiri,et al.  Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams , 2010 .

[22]  José Costa,et al.  A study of the mechanical behaviour on fibre reinforced hollow microspheres hybrid composites , 2010 .

[23]  Anirban Das,et al.  Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres , 2009 .

[24]  C. Xie,et al.  Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites , 2009 .

[25]  C. R. Nair,et al.  Mechanical properties of polybenzoxazine syntactic foams , 2008 .

[26]  C. Lin,et al.  Aromatic diamine-based benzoxazines and their high performance thermosets , 2008 .

[27]  Shaik Jeelani,et al.  Processing and performance evaluation of hollow microspheres filled epoxy composites , 2008 .

[28]  S. Wong,et al.  Nano-toughening versus micro-toughening of polymer syntactic foams , 2007 .

[29]  J. d’Almeida Evaluation of the Compressive Yield Strength of Hollow Glass Microsphere – Epoxy Composites as a Function of the Microsphere/ Epoxy Interface Strength , 2007 .

[30]  Nikhil Gupta,et al.  Tensile properties of glass microballoon-epoxy resin syntactic foams , 2006 .

[31]  F. Li,et al.  Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites , 2006 .

[32]  S. Wong,et al.  Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures , 2005 .

[33]  Takafumi Kawaguchi,et al.  The moisture effect on the fatigue crack growth of glass particle and fiber reinforced epoxies with strong and weak bonding conditions: Part 2. A microscopic study on toughening mechanism , 2004 .

[34]  H. Kim,et al.  Manufacturing and failure mechanisms of syntactic foam under compression , 2004 .

[35]  Y. Rezek,et al.  Effect of composition on the fracture toughness and flexural strength of syntactic foams , 2004 .

[36]  P. Mensah,et al.  Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio , 2003 .

[37]  N. Gupta,et al.  Response of Syntactic Foam Core Sandwich Structured Composites to Three-Point Bending , 2002 .

[38]  X. Ning,et al.  Phenolic materials via ring‐opening polymerization of benzoxazines: Effect of molecular structure on mechanical and dynamic mechanical properties , 1994 .

[39]  L. Nicolais,et al.  Mechanical properties of glass microsphere‐filled composite materials , 1981 .