Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection

[1]  Xiaohui Yuan,et al.  A hybrid framework for automatic joint detection of human poses in depth frames , 2018, Pattern Recognit..

[2]  Ge Li,et al.  A multilayer backpropagation saliency detection algorithm and its applications , 2018, Multimedia Tools and Applications.

[3]  Dong Xu,et al.  Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection: A Survey , 2018, IEEE Signal Processing Magazine.

[4]  Junwei Han,et al.  CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion. , 2018, IEEE transactions on cybernetics.

[5]  Jiwen Lu,et al.  Multi-modal uniform deep learning for RGB-D person re-identification , 2017, Pattern Recognit..

[6]  Chalavadi Krishna Mohan,et al.  Human action recognition in RGB-D videos using motion sequence information and deep learning , 2017, Pattern Recognit..

[7]  Jiebo Luo,et al.  Multi-modal deep feature learning for RGB-D object detection , 2017, Pattern Recognit..

[8]  Jing Li,et al.  Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model , 2017, IEEE Transactions on Image Processing.

[9]  Huan Du,et al.  Depth-Aware Salient Object Detection and Segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning , 2017, IEEE Transactions on Image Processing.

[10]  Deyu Meng,et al.  Co-Saliency Detection via a Self-Paced Multiple-Instance Learning Framework , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jiandong Tian,et al.  RGBD Salient Object Detection via Deep Fusion , 2016, IEEE Transactions on Image Processing.

[12]  Alberto Del Bimbo,et al.  Motion segment decomposition of RGB-D sequences for human behavior understanding , 2017, Pattern Recognit..

[13]  Weisi Lin,et al.  Saliency-based stereoscopic image retargeting , 2016, Inf. Sci..

[14]  Shijian Lu,et al.  Discriminative Multi-modal Feature Fusion for RGBD Indoor Scene Recognition , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Nick Barnes,et al.  Local Background Enclosure for RGB-D Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Qingming Huang,et al.  Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion , 2016, IEEE Signal Processing Letters.

[17]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Jiwen Lu,et al.  MMSS: Multi-modal Sharable and Specific Feature Learning for RGB-D Object Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[20]  Feng Wu,et al.  Background Prior-Based Salient Object Detection via Deep Reconstruction Residual , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Wolfram Burgard,et al.  Multimodal deep learning for robust RGB-D object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Sven Behnke,et al.  RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Ran Ju,et al.  Depth saliency based on anisotropic center-surround difference , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[25]  Zhi Liu,et al.  Salient region detection for stereoscopic images , 2014, 2014 19th International Conference on Digital Signal Processing.

[26]  Rongrong Ji,et al.  RGBD Salient Object Detection: A Benchmark and Algorithms , 2014, ECCV.

[27]  Jitendra Malik,et al.  Learning Rich Features from RGB-D Images for Object Detection and Segmentation , 2014, ECCV.

[28]  Xiaochun Cao,et al.  Depth Enhanced Saliency Detection Method , 2014, ICIMCS '14.

[29]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[30]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Weisi Lin,et al.  A Video Saliency Detection Model in Compressed Domain , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[32]  Weisi Lin,et al.  Saliency detection for stereoscopic images , 2013, 2013 Visual Communications and Image Processing (VCIP).

[33]  Mei Han,et al.  Category-Independent Object-Level Saliency Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[34]  James M. Rehg,et al.  An In Depth View of Saliency , 2013, BMVC.

[35]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  K. Madhava Krishna,et al.  Depth really Matters: Improving Visual Salient Region Detection with Depth , 2013, BMVC.

[37]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[38]  Xueqing Li,et al.  Leveraging stereopsis for saliency analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Bu-Sung Lee,et al.  Bottom-Up Saliency Detection Model Based on Human Visual Sensitivity and Amplitude Spectrum , 2012, IEEE Transactions on Multimedia.

[40]  Dieter Fox,et al.  Unsupervised Feature Learning for RGB-D Based Object Recognition , 2012, ISER.

[41]  Léon Bottou,et al.  Stochastic Gradient Descent Tricks , 2012, Neural Networks: Tricks of the Trade.

[42]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[43]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.