Particle Swarm Optimization For Quadratic Assignment Problems–A Forma Analysis Approach

Particle Swarm Optimization (PSO) is an innovative and competitive optimization technique for numerical optimization with real-parameter representation. This paper examines the working mechanism of PSO in a principled manner with forma analysis and investigates the applicability of PSO on the Quadratic Assignment Problem (QAP). Particularly, the derived PSO operator for QAP is empirically studied against a Genetic Algorithm (GA).

[1]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[2]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[3]  Mehmet Fatih Tasgetiren,et al.  A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem , 2007, Eur. J. Oper. Res..

[4]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[5]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[7]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[8]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[9]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[10]  Thomas Stützle,et al.  ACO algorithms for the quadratic assignment problem , 1999 .

[11]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[12]  Julian Togelius,et al.  Geometric particle swarm optimization , 2008 .

[13]  Tao Gong,et al.  Enhanced forma analysis of permutation problems , 2007, GECCO '07.

[14]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[15]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[16]  Nicholas J. Radcliffe,et al.  The algebra of genetic algorithms , 1994, Annals of Mathematics and Artificial Intelligence.

[17]  Patrick David Surry,et al.  Prescriptive formalism for constructing domain-specific evolutionary algorithms , 1998 .

[18]  Andrew Tuson,et al.  No optimisation without representation : a knowledge based systems view of evolutionary/neighbourhood search optimisation , 1999 .

[19]  Yu Yuan,et al.  Extensive Testing of a Hybrid Genetic Algorithm for Solving Quadratic Assignment Problems , 2002, Comput. Optim. Appl..

[20]  Tao Gong,et al.  Formal Descriptions of Real Parameter Optimisation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[21]  Riccardo Poli,et al.  Geometric Particle Swarm Optimisation , 2007, EuroGP.

[22]  Tao Gong,et al.  Binary particle swarm optimization: a forma analysis approach , 2007, GECCO '07.

[23]  Tao Gong,et al.  Differential Evolution for Binary Encoding , 2007 .

[24]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[25]  Christian Bierwirth,et al.  On Permutation Representations for Scheduling Problems , 1996, PPSN.