Model Reduction for Combustion Chemistry

The description of chemically reacting systems leads very often to reaction mechanisms with far above hundred chemical species (and, therefore, to more than a hundred partial differential equations), which possibly react within more than a thousand of elementary reactions. These kinetic processes cover time scales from nanoseconds to seconds. Due to these scaling problems the detailed simulation of three-dimensional turbulent flows in practical systems using detailed kinetics is beyond the capacity of even today’s super-computers. Using simplified sub-models for the chemical kinetics is a way out of this problem. The question arising in mathematical modeling of reactive flows is then: how detailed, or down to which scale has the chemical reaction to be resolved in order to allow a reliable description of the entire process? The aim is the development of models, which should be as simple as possible in the sense of an efficient description, and also as detailed as necessary in the sense of reliability. In particular, an oversimplification of the coupling processes between chemical reaction and turbulent flow should be avoided by all means to allow a predictive character. This chapter describes different methodologies for the reduction of chemical mechanisms for subsequent use in reacting flow calculations.

[1]  S. Pope,et al.  Transport-chemistry coupling in the reduced description of reactive flows , 2007 .

[2]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[3]  H. Najm,et al.  Reactive and reactive-diffusive time scales in stiff reaction-diffusion systems , 2005 .

[4]  Michael J. Davis,et al.  Geometric investigation of low-dimensional manifolds in systems approaching equilibrium , 1999 .

[5]  Tamás Turányi,et al.  Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms , 1998 .

[6]  M. Bodenstein,et al.  Photochemische Kinetik des Chlorknallgases , 1913 .

[7]  Habib N. Najm,et al.  A CSP and tabulation-based adaptive chemistry model , 2007 .

[8]  Epaminondas Mastorakos,et al.  An algorithm for the construction of global reduced mechanisms with CSP data , 1999 .

[9]  Hans G. Kaper,et al.  Analysis of the Computational Singular Perturbation Reduction Method for Chemical Kinetics , 2004, J. Nonlinear Sci..

[10]  Tamás Turányi,et al.  Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms , 1997 .

[11]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[12]  Marc R. Roussel,et al.  On the geometry of transient relaxation , 1991 .

[13]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[14]  D Lebiedz,et al.  Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. , 2004, The Journal of chemical physics.

[15]  Stelios Rigopoulos,et al.  Rate-controlled constrained equilibrium: Formulation and application to nonpremixed laminar flames , 2005 .

[16]  J. Griffiths Reduced kinetic models and their application to practical combustion systems , 1995 .

[17]  Tamás Turányi,et al.  On the error of the quasi-steady-state approximation , 1993 .

[18]  J.-Y. Chen,et al.  A General Procedure for Constructing Reduced Reaction Mechanisms with Given Independent Relations , 1988 .

[19]  Prodromos Daoutidis,et al.  Model reduction and control of multi-scale reaction-convection processes , 2008 .

[20]  J. Bowen,et al.  Singular perturbation refinement to quasi-steady state approximation in chemical kinetics , 1963 .

[21]  Ulrich Maas,et al.  Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds , 1994 .

[22]  M. Mavrovouniotis,et al.  Simplification of Mathematical Models of Chemical Reaction Systems. , 1998, Chemical reviews.

[23]  Willi Jäger,et al.  Modelling of Chemical Reaction Systems , 1981 .

[24]  Towards Dynamical Dimension Reduction in Reactive Flow Problems , 1996 .

[25]  H. Pitsch,et al.  An efficient error-propagation-based reduction method for large chemical kinetic mechanisms , 2008 .

[26]  Dimitris A. Goussis,et al.  Asymptotic Solution of Stiff PDEs with the CSP Method: The Reaction Diffusion Equation , 1998, SIAM J. Sci. Comput..

[27]  M. Bodenstein,et al.  Eine Theorie der photochemischen Reaktionsgeschwindigkeiten , 1913 .

[28]  Habib N. Najm,et al.  Skeletal mechanism generation and analysis for n-heptane with CSP , 2007 .

[29]  Hans G. Kaper,et al.  Two perspectives on reduction of ordinary differential equations , 2005 .

[30]  Vladimir Gol'dshtein,et al.  On a modified version of ILDM approach: asymptotic analysis based on integral manifolds , 2006 .

[31]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[32]  Stephen B. Pope,et al.  Computations of turbulent combustion: Progress and challenges , 1991 .

[33]  Habib N. Najm,et al.  Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method , 2005 .

[34]  Habib N. Najm,et al.  Model Reduction and Physical Understanding of Slowly Oscillating Processes: The Circadian Cycle , 2006, Multiscale Model. Simul..

[35]  S. H. Lam,et al.  Conventional asymptotics and computational singular perturbation for simplified kinetics modelling , 1991 .

[36]  U. Maas,et al.  Implementation of ILDMs based on a Representation in Generalized Coordinates , 2006 .

[37]  Ioannis G. Kevrekidis,et al.  Constraint-Defined Manifolds: a Legacy Code Approach to Low-Dimensional Computation , 2005, J. Sci. Comput..

[38]  N. Peters,et al.  Multiscale combustion and turbulence , 2009 .

[39]  A. Gorban,et al.  Invariant Manifolds for Physical and Chemical Kinetics , 2005 .

[40]  Luc Vervisch,et al.  Multidimensional flamelet-generated manifolds for partially premixed combustion , 2010 .

[41]  Habib N. Najm,et al.  CSP analysis of a transient flame-vortex interaction: time scales and manifolds , 2003 .

[42]  Mauro Valorani,et al.  The G-Scheme: A framework for multi-scale adaptive model reduction , 2009, J. Comput. Phys..

[43]  Michael Frenklach,et al.  PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics , 1998 .

[44]  U. Maas Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics , 1998 .

[45]  U. Maas,et al.  Problem adapted reduced models based on Reaction–Diffusion Manifolds (REDIMs) , 2009 .

[46]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[47]  R. Bellman Dynamic programming. , 1957, Science.

[48]  Ulrich Maas,et al.  Repro-Modelling Based Generation of Intrinsic Low-Dimensional Manifolds , 2002 .

[49]  Mauro Valorani,et al.  An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems , 2006, J. Comput. Phys..

[50]  U. Maas,et al.  A general algorithm for improving ILDMs , 2002 .

[51]  Herschel Rabitz,et al.  A general analysis of approximate lumping in chemical kinetics , 1990 .

[52]  U. Maas,et al.  Investigation of the Hierarchical Structure of Kinetic Models in Ignition Problems , 2009 .

[53]  Forman A. Williams,et al.  The asymptotic structure of stoichiometric methaneair flames , 1987 .

[54]  Max Bodenstein,et al.  Geschwindigkeit der Bildung des Bromwasserstoffs aus seinen Elementen , 1907 .

[55]  Eliodoro Chiavazzo,et al.  Comparison of invariant manifolds for model reduction in chemical kinetics , 2007 .

[56]  Nasser Darabiha,et al.  Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion , 2000 .

[57]  Mitchell D. Smooke,et al.  Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume , 1991 .

[58]  Hans G. Kaper,et al.  Fast and Slow Dynamics for the Computational Singular Perturbation Method , 2004, Multiscale Model. Simul..

[59]  Van Oijen,et al.  Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds , 2000 .

[60]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[61]  Mauro Valorani,et al.  Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock , 2001 .

[62]  S. H. Lam,et al.  REDUCED CHEMISTRY-DIFFUSION COUPLING , 2007 .

[63]  Ulrich Maas,et al.  Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds , 1992 .

[64]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[65]  Gene H. Golub,et al.  Matrix computations , 1983 .

[66]  Linda,et al.  A Time Integration Algorithm forFlexible Mechanism Dynamics : TheDAE-Method , 1996 .

[67]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[68]  U. Maas,et al.  ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics , 2000 .

[69]  Habib N. Najm,et al.  Analysis of methane–air edge flame structure , 2010 .

[70]  T. Turányi,et al.  KINAL - a program package for kinetic analysis of reaction mechanisms , 1990, Comput. Chem..

[71]  Tamás Turányi,et al.  Application of repro-modeling for the reduction of combustion mechanisms , 1994 .

[72]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[73]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[74]  N. Peters,et al.  Reduced Kinetic Mechanisms for Applications in Combustion Systems , 1993 .

[75]  C. Law,et al.  Toward accommodating realistic fuel chemistry in large-scale computations , 2009 .

[76]  U. Maas,et al.  An efficient storage scheme for reduced chemical kinetics based on orthogonal polynomials , 1997 .

[77]  James C. Keck,et al.  Rate-controlled partial-equilibrium method for treating reacting gas mixtures , 1971 .

[78]  Stelios Rigopoulos,et al.  Reduced chemistry for hydrogen and methanol premixed flames via RCCE , 2007 .

[79]  Alison S. Tomlin,et al.  A systematic lumping approach for the reduction of comprehensive kinetic models , 2005 .

[80]  Tiziano Faravelli,et al.  Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures , 2001 .

[81]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics , 1993 .

[82]  Habib N. Najm,et al.  Adaptive Chemistry Computations of Reacting Flow. , 2007 .

[83]  D. Thévenin,et al.  Correlation analysis of direct numerical simulation data of turbulent non-premixed flames , 1998 .

[84]  Alberto Tesei,et al.  Fluid dynamical aspects of combustion theory , 1991 .

[85]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[86]  U. Maas,et al.  Global Quasi Linearization (GQL) for the automatic reduction of chemical kinetics , 2007 .

[87]  U. Maas,et al.  Extension of the ILDM method to the domain of slow chemistry , 2007 .

[88]  N. Peters Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames , 1985 .

[89]  Chung King Law,et al.  Combustion at a crossroads: Status and prospects , 2007 .

[90]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .

[91]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .