GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil
暂无分享,去创建一个
Clemens Reimann | Peter Filzmoser | G. Jordan | Enrico Dinelli | I. Slaninka | Koen Oorts | Patrice de Caritat | Timo Tarvainen | Alecos Demetriades | I. Schoeters | Mike J. McLaughlin | Philippe Négrel | Maria João Batista | Stjepan Husnjak | Z. Zomeni | Mateja Gosar | Andreas M. Zissimos | Jörg Matschullat | V. Klos | Karl Fabian | Paolo Valera | Rainer Baritz | Fabian Jähne-Klingberg | Stefano Albanese | Martiya Sadeghi | J. M. Soriano-Disla | Trajče Stafilov | A. Scheib | P. Filzmoser | M. Gosar | P. O'Connor | L. Janik | M. Sadeghi | T. Tarvainen | R. Baritz | A. Lima | S. Albanese | B. Vivo | Z. Zomeni | A. Zissimos | S. Forrester | M. Mclaughlin | J. Kirby | K. Oorts | M. Batista | A. Demetriades | W. D. Vos | M. Ďuriš | A. Gilucis | V. Gregorauskienė | J. Halamić | G. Jordan | J. Locutura | R. Ottesen | V. Petersell | I. Salpeteur | D. Cicchella | C. Reimann | K. Fabian | M. Birke | E. Dinelli | A. Ladenberger | P. Caritat | J. Matschullat | G. Mol | T. Stafilov | S. Husnjak | J. Hoogewerff | I. Slaninka | S. Radusinović | O. A. Eggen | M. Eklund | D. Flight | U. Fugedi | W. D. Groot | A. Gulan | E. Haslinger | P. Hayoz | H. Hrvatović | M. Kaminari | V. Klos | L. Kuti | P. Kwecko | P. Lučivjanský | D. Mackových | B. Malyuk | R. Maquil | R. Meuli | P. Négrel | M. Poňavič | C. Prazeres | U. Rauch | R. Scanlon | P. Šefčík | E. Sellersjö | A. Schedl | I. Schoeters | A. Šorša | R. Svrkota | P. Valera | V. Verougstraete | D. Vidojević | A. Mann | S. Forrester | S. Pfleiderer | Manfred Birke | Domenico Cicchella | B. De Vivo | W. De Vos | M. Eklund | Dee Flight | U. Fugedi | A. Gilucis | A. Gulan | P. Hayoz | E. Haslinger | L. Kuti | P. Kwecko | Annamaria Lima | J. Locutura | D. Mackovych | R. Maquil | G. Mol | P. O'Connor | C. Prazeres | I. Salpeteur | A. Schedl | Andreas Scheib | P. Sefcik | D. Vidojević | L. Janik | F. Jähne-Klingberg | Anna Ladenberger | S. Pfleiderer | A. Dusza-Dobek | M. Anderson | A. Bel-Ian | V. Ernsten | A. Pasnieczna | V. Tendavilov | Jason K. Kirby | Rolf Tore Ottesen | Jurian Hoogewerff | M. Ďuriš | A. Dusza-Dobek | V. Gregorauskiene | W. De Groot | Josip Halamić | H. Hrvatovic | M. Kaminari | P. Lucivjansky | A. Mann | B. I. Malyuk | R. G. Meuli | V. Petersell | M. Poňavič | U. Rauch | S. Radusinović | R. Scanlon | E. Sellersjö | Ajka Šorša | R. Svrkota | V. Verougstraete | M. Anderson | A. Bel-Ian | V. Ernsten | A. Pasnieczna | V. Tendavilov | W. Vos | O. Eggen
[1] P. de Caritat,et al. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. , 2017, The Science of the total environment.
[2] John W. Tukey,et al. Exploratory data analysis , 1977, Addison-Wesley series in behavioral science : quantitative methods.
[3] Ondrej Hájek,et al. Spatial distribution and risk assessment of metals in agricultural soils , 2016 .
[4] M. Gosar,et al. Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH Regulation , 2016 .
[5] G. Tóth,et al. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. , 2016, The Science of the total environment.
[6] G. Tóth,et al. Heavy metals in agricultural soils of the European Union with implications for food safety. , 2016, Environment international.
[7] S. McGrath,et al. Derivation of ecological standards for risk assessment of molybdate in soil , 2016 .
[8] P. Mastrorilli,et al. Are conventional statistical techniques exhaustive for defining metal background concentrations in harbour sediments? A case study: The Coastal Area of Bari (Southeast Italy). , 2015, Chemosphere.
[9] Katherine A Rothwell,et al. A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil. , 2015, The Science of the total environment.
[10] C. Reimann,et al. Low density geochemical mapping and mineral exploration: application of the mineral system concept , 2015 .
[11] E. Grunsky,et al. Robust Principal Component Analysis for Power Transformed Compositional Data , 2015 .
[12] A. Scheib,et al. Geochemical evidence of aeolian deposits in European soils , 2014 .
[13] P. Filzmoser,et al. Chemistry of Europe’s agricultural soils – Part B: General background information and further analysis of the GEMAS data set , 2014 .
[14] C. P. Nathanail,et al. Methodology for the determination of normal background concentrations of contaminants in English soil. , 2013, The Science of the total environment.
[15] Arwyn Jones,et al. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union , 2013, Environmental Monitoring and Assessment.
[16] P. Filzmoser,et al. The concept of compositional data analysis in practice--total major element concentrations in agricultural and grazing land soils of Europe. , 2012, The Science of the total environment.
[17] David B. Smith,et al. The IUGS/IAGC Task Group on Global Geochemical Baselines , 2012 .
[18] A. Demetriades,et al. Lead and lead isotopes in agricultural soils of Europe – The continental perspective , 2012 .
[19] M. Cave,et al. Normal background concentrations (NBCs) of contaminants in English soils : final project report , 2012 .
[20] Methodology for the determination of normal background contaminant concentrations in English soils , 2012 .
[21] L. Beccaluva,et al. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector , 2011 .
[22] Data Analysis for Urban Geochemical Data , 2011 .
[23] A. Demetriades. Hazard and Exposure Assessment in Contaminated Land Investigations and Environmental Management , 2011 .
[24] T. Tarvainen,et al. TAPIR--Finnish national geochemical baseline database. , 2010, The Science of the total environment.
[25] P. Filzmoser,et al. The bivariate statistical analysis of environmental (compositional) data. , 2010, The Science of the total environment.
[26] Colin R. Janssen,et al. Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging After Contamination: Using Calibrated Bioavailability Models to Set Ecological Soil Standards , 2009, Environmental toxicology and chemistry.
[27] R. Salminen,et al. Arsenic distribution in the environment: the effects of scale. , 2009 .
[28] David R. Smith,et al. Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic? , 2009 .
[29] Filip Tack,et al. Could shelling in the First World War have increased copper concentrations in the soil around Ypres? , 2008 .
[30] Clemens Reimann,et al. Statistical data analysis explained : applied environmental statics with R , 2008 .
[31] Christa Cornelis,et al. Comparison of Soil Clean-up Standards for Trace Elements Between Countries: Why do they differ? (9 pages) , 2006 .
[32] S. Pirc,et al. Geochemical atlas of Europe. Part 2, Interpretation of geochemical maps, additional tables, figures, maps, and related publications , 2006 .
[33] C. Reimann,et al. Geochemical background--concept and reality. , 2005, The Science of the total environment.
[34] Clemens Reimann,et al. Background and threshold: critical comparison of methods of determination. , 2005, The Science of the total environment.
[35] M. Bidovec,et al. Geochemical Atlas of Europe, Part 1, Background Information, Methodology and Maps , 2005 .
[36] W. H. Patrick,et al. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice , 1993, Plant and Soil.
[37] J. Eriksson,et al. Agricultural soils in Northern Europe: a geochemical atlas. , 2003 .
[38] J. Feldmann,et al. Uptake Kinetics of Arsenic Species in Rice Plants , 2002, Plant Physiology.
[39] C. Reimann,et al. Geochemical background – can we calculate it? , 2000 .
[40] P. Filzmoser,et al. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data , 2000 .
[41] Alan G. Smith,et al. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites , 2000 .
[42] I Thornton,et al. Spatially resolved hazard and exposure assessments: an example of lead in soil at Lavrion, Greece. , 2000, Environmental research.
[43] A Frank,et al. 'Mysterious' moose disease in Sweden. Similarities to copper deficiency and/or molybdenosis in cattle and sheep. Biochemical background of clinical signs and organ lesions. , 1998, The Science of the total environment.
[44] I. Vacondios,et al. GEOCHEMISTRY OF CHROMITITES AND HOST ROCKS FROM THE PINDOS OPHIOLITE COMPLEX, NORTHWESTERN GREECE , 1995 .
[45] E. Steinnes,et al. Atmospheric deposition of trace elements in Norway: Temporal and spatial trends studied by moss analysis , 1994 .
[46] Alastair J. Sinclair,et al. A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited , 1991 .
[47] Hans Kürzl,et al. Exploratory data analysis: recent advances for the interpretation of geochemical data , 1988 .
[48] A. Sinclair. Statistical interpretation of soil geochemical data , 1986 .
[49] John Aitchison,et al. The Statistical Analysis of Compositional Data , 1986 .
[50] A. Sinclair. Selection of threshold values in geochemical data using probability graphs , 1974 .
[51] Claude Lepeltier. A simplified statistical treatment of geochemical data by graphical representation , 1969 .
[52] H. E. Hawkes,et al. Geochemistry in Mineral Exploration , 1962 .
[53] M. L. White,et al. Study of the distribution of some geochemical data , 1959 .
[54] H. E. Hawkes,et al. Principles of geochemical prospecting , 1957 .