GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil

Clemens Reimann | Peter Filzmoser | G. Jordan | Enrico Dinelli | I. Slaninka | Koen Oorts | Patrice de Caritat | Timo Tarvainen | Alecos Demetriades | I. Schoeters | Mike J. McLaughlin | Philippe Négrel | Maria João Batista | Stjepan Husnjak | Z. Zomeni | Mateja Gosar | Andreas M. Zissimos | Jörg Matschullat | V. Klos | Karl Fabian | Paolo Valera | Rainer Baritz | Fabian Jähne-Klingberg | Stefano Albanese | Martiya Sadeghi | J. M. Soriano-Disla | Trajče Stafilov | A. Scheib | P. Filzmoser | M. Gosar | P. O'Connor | L. Janik | M. Sadeghi | T. Tarvainen | R. Baritz | A. Lima | S. Albanese | B. Vivo | Z. Zomeni | A. Zissimos | S. Forrester | M. Mclaughlin | J. Kirby | K. Oorts | M. Batista | A. Demetriades | W. D. Vos | M. Ďuriš | A. Gilucis | V. Gregorauskienė | J. Halamić | G. Jordan | J. Locutura | R. Ottesen | V. Petersell | I. Salpeteur | D. Cicchella | C. Reimann | K. Fabian | M. Birke | E. Dinelli | A. Ladenberger | P. Caritat | J. Matschullat | G. Mol | T. Stafilov | S. Husnjak | J. Hoogewerff | I. Slaninka | S. Radusinović | O. A. Eggen | M. Eklund | D. Flight | U. Fugedi | W. D. Groot | A. Gulan | E. Haslinger | P. Hayoz | H. Hrvatović | M. Kaminari | V. Klos | L. Kuti | P. Kwecko | P. Lučivjanský | D. Mackových | B. Malyuk | R. Maquil | R. Meuli | P. Négrel | M. Poňavič | C. Prazeres | U. Rauch | R. Scanlon | P. Šefčík | E. Sellersjö | A. Schedl | I. Schoeters | A. Šorša | R. Svrkota | P. Valera | V. Verougstraete | D. Vidojević | A. Mann | S. Forrester | S. Pfleiderer | Manfred Birke | Domenico Cicchella | B. De Vivo | W. De Vos | M. Eklund | Dee Flight | U. Fugedi | A. Gilucis | A. Gulan | P. Hayoz | E. Haslinger | L. Kuti | P. Kwecko | Annamaria Lima | J. Locutura | D. Mackovych | R. Maquil | G. Mol | P. O'Connor | C. Prazeres | I. Salpeteur | A. Schedl | Andreas Scheib | P. Sefcik | D. Vidojević | L. Janik | F. Jähne-Klingberg | Anna Ladenberger | S. Pfleiderer | A. Dusza-Dobek | M. Anderson | A. Bel-Ian | V. Ernsten | A. Pasnieczna | V. Tendavilov | Jason K. Kirby | Rolf Tore Ottesen | Jurian Hoogewerff | M. Ďuriš | A. Dusza-Dobek | V. Gregorauskiene | W. De Groot | Josip Halamić | H. Hrvatovic | M. Kaminari | P. Lucivjansky | A. Mann | B. I. Malyuk | R. G. Meuli | V. Petersell | M. Poňavič | U. Rauch | S. Radusinović | R. Scanlon | E. Sellersjö | Ajka Šorša | R. Svrkota | V. Verougstraete | M. Anderson | A. Bel-Ian | V. Ernsten | A. Pasnieczna | V. Tendavilov

[1]  P. de Caritat,et al.  Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. , 2017, The Science of the total environment.

[2]  John W. Tukey,et al.  Exploratory data analysis , 1977, Addison-Wesley series in behavioral science : quantitative methods.

[3]  Ondrej Hájek,et al.  Spatial distribution and risk assessment of metals in agricultural soils , 2016 .

[4]  M. Gosar,et al.  Use of GEMAS data for risk assessment of cadmium in European agricultural and grazing land soil under the REACH Regulation , 2016 .

[5]  G. Tóth,et al.  Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. , 2016, The Science of the total environment.

[6]  G. Tóth,et al.  Heavy metals in agricultural soils of the European Union with implications for food safety. , 2016, Environment international.

[7]  S. McGrath,et al.  Derivation of ecological standards for risk assessment of molybdate in soil , 2016 .

[8]  P. Mastrorilli,et al.  Are conventional statistical techniques exhaustive for defining metal background concentrations in harbour sediments? A case study: The Coastal Area of Bari (Southeast Italy). , 2015, Chemosphere.

[9]  Katherine A Rothwell,et al.  A comparison of methods used to calculate normal background concentrations of potentially toxic elements for urban soil. , 2015, The Science of the total environment.

[10]  C. Reimann,et al.  Low density geochemical mapping and mineral exploration: application of the mineral system concept , 2015 .

[11]  E. Grunsky,et al.  Robust Principal Component Analysis for Power Transformed Compositional Data , 2015 .

[12]  A. Scheib,et al.  Geochemical evidence of aeolian deposits in European soils , 2014 .

[13]  P. Filzmoser,et al.  Chemistry of Europe’s agricultural soils – Part B: General background information and further analysis of the GEMAS data set , 2014 .

[14]  C. P. Nathanail,et al.  Methodology for the determination of normal background concentrations of contaminants in English soil. , 2013, The Science of the total environment.

[15]  Arwyn Jones,et al.  The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union , 2013, Environmental Monitoring and Assessment.

[16]  P. Filzmoser,et al.  The concept of compositional data analysis in practice--total major element concentrations in agricultural and grazing land soils of Europe. , 2012, The Science of the total environment.

[17]  David B. Smith,et al.  The IUGS/IAGC Task Group on Global Geochemical Baselines , 2012 .

[18]  A. Demetriades,et al.  Lead and lead isotopes in agricultural soils of Europe – The continental perspective , 2012 .

[19]  M. Cave,et al.  Normal background concentrations (NBCs) of contaminants in English soils : final project report , 2012 .

[20]  Methodology for the determination of normal background contaminant concentrations in English soils , 2012 .

[21]  L. Beccaluva,et al.  Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector , 2011 .

[22]  Data Analysis for Urban Geochemical Data , 2011 .

[23]  A. Demetriades Hazard and Exposure Assessment in Contaminated Land Investigations and Environmental Management , 2011 .

[24]  T. Tarvainen,et al.  TAPIR--Finnish national geochemical baseline database. , 2010, The Science of the total environment.

[25]  P. Filzmoser,et al.  The bivariate statistical analysis of environmental (compositional) data. , 2010, The Science of the total environment.

[26]  Colin R. Janssen,et al.  Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging After Contamination: Using Calibrated Bioavailability Models to Set Ecological Soil Standards , 2009, Environmental toxicology and chemistry.

[27]  R. Salminen,et al.  Arsenic distribution in the environment: the effects of scale. , 2009 .

[28]  David R. Smith,et al.  Geochemical gradients in soil O-horizon samples from southern Norway: Natural or anthropogenic? , 2009 .

[29]  Filip Tack,et al.  Could shelling in the First World War have increased copper concentrations in the soil around Ypres? , 2008 .

[30]  Clemens Reimann,et al.  Statistical data analysis explained : applied environmental statics with R , 2008 .

[31]  Christa Cornelis,et al.  Comparison of Soil Clean-up Standards for Trace Elements Between Countries: Why do they differ? (9 pages) , 2006 .

[32]  S. Pirc,et al.  Geochemical atlas of Europe. Part 2, Interpretation of geochemical maps, additional tables, figures, maps, and related publications , 2006 .

[33]  C. Reimann,et al.  Geochemical background--concept and reality. , 2005, The Science of the total environment.

[34]  Clemens Reimann,et al.  Background and threshold: critical comparison of methods of determination. , 2005, The Science of the total environment.

[35]  M. Bidovec,et al.  Geochemical Atlas of Europe, Part 1, Background Information, Methodology and Maps , 2005 .

[36]  W. H. Patrick,et al.  Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice , 1993, Plant and Soil.

[37]  J. Eriksson,et al.  Agricultural soils in Northern Europe: a geochemical atlas. , 2003 .

[38]  J. Feldmann,et al.  Uptake Kinetics of Arsenic Species in Rice Plants , 2002, Plant Physiology.

[39]  C. Reimann,et al.  Geochemical background – can we calculate it? , 2000 .

[40]  P. Filzmoser,et al.  Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data , 2000 .

[41]  Alan G. Smith,et al.  Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation structures in peridotites , 2000 .

[42]  I Thornton,et al.  Spatially resolved hazard and exposure assessments: an example of lead in soil at Lavrion, Greece. , 2000, Environmental research.

[43]  A Frank,et al.  'Mysterious' moose disease in Sweden. Similarities to copper deficiency and/or molybdenosis in cattle and sheep. Biochemical background of clinical signs and organ lesions. , 1998, The Science of the total environment.

[44]  I. Vacondios,et al.  GEOCHEMISTRY OF CHROMITITES AND HOST ROCKS FROM THE PINDOS OPHIOLITE COMPLEX, NORTHWESTERN GREECE , 1995 .

[45]  E. Steinnes,et al.  Atmospheric deposition of trace elements in Norway: Temporal and spatial trends studied by moss analysis , 1994 .

[46]  Alastair J. Sinclair,et al.  A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited , 1991 .

[47]  Hans Kürzl,et al.  Exploratory data analysis: recent advances for the interpretation of geochemical data , 1988 .

[48]  A. Sinclair Statistical interpretation of soil geochemical data , 1986 .

[49]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[50]  A. Sinclair Selection of threshold values in geochemical data using probability graphs , 1974 .

[51]  Claude Lepeltier A simplified statistical treatment of geochemical data by graphical representation , 1969 .

[52]  H. E. Hawkes,et al.  Geochemistry in Mineral Exploration , 1962 .

[53]  M. L. White,et al.  Study of the distribution of some geochemical data , 1959 .

[54]  H. E. Hawkes,et al.  Principles of geochemical prospecting , 1957 .